gpt4 book ai didi

java - 使用 JOCL/OPENCL 加速强度总和计算

转载 作者:搜寻专家 更新时间:2023-11-01 03:26:04 25 4
gpt4 key购买 nike

您好,我是 JOCL (opencl) 的新手。我编写这段代码是为了获取每张图像的强度总和。内核采用一个一维数组,其中包含所有图像的所有像素,这些像素彼此放在一起。一张图片是 300x300 ,所以每张图片有 90000 像素。目前它比我按顺序执行此操作时慢。

我的代码

package PAR;

/*
* JOCL - Java bindings for OpenCL
*
* Copyright 2009 Marco Hutter - http://www.jocl.org/
*/
import IMAGE_IO.ImageReader;
import IMAGE_IO.Input_Folder;
import static org.jocl.CL.*;

import org.jocl.*;

/**
* A small JOCL sample.
*/
public class IPPARA {

/**
* The source code of the OpenCL program to execute
*/
private static String programSource =
"__kernel void "
+ "sampleKernel(__global uint *a,"
+ " __global uint *c)"
+ "{"
+ "__private uint intensity_core=0;"
+ " uint i = get_global_id(0);"
+ " for(uint j=i*90000; j < (i+1)*90000; j++){ "
+ " intensity_core += a[j];"
+ " }"
+ "c[i]=intensity_core;"
+ "}";

/**
* The entry point of this sample
*
* @param args Not used
*/
public static void main(String args[]) {
long numBytes[] = new long[1];

ImageReader imagereader = new ImageReader() ;
int srcArrayA[] = imagereader.readImages();

int size[] = new int[1];
size[0] = srcArrayA.length;
long before = System.nanoTime();
int dstArray[] = new int[size[0]/90000];


Pointer srcA = Pointer.to(srcArrayA);
Pointer dst = Pointer.to(dstArray);


// Obtain the platform IDs and initialize the context properties
System.out.println("Obtaining platform...");
cl_platform_id platforms[] = new cl_platform_id[1];
clGetPlatformIDs(platforms.length, platforms, null);
cl_context_properties contextProperties = new cl_context_properties();
contextProperties.addProperty(CL_CONTEXT_PLATFORM, platforms[0]);

// Create an OpenCL context on a GPU device
cl_context context = clCreateContextFromType(
contextProperties, CL_DEVICE_TYPE_CPU, null, null, null);
if (context == null) {
// If no context for a GPU device could be created,
// try to create one for a CPU device.
context = clCreateContextFromType(
contextProperties, CL_DEVICE_TYPE_CPU, null, null, null);

if (context == null) {
System.out.println("Unable to create a context");
return;
}
}

// Enable exceptions and subsequently omit error checks in this sample
CL.setExceptionsEnabled(true);

// Get the list of GPU devices associated with the context
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, null, numBytes);

// Obtain the cl_device_id for the first device
int numDevices = (int) numBytes[0] / Sizeof.cl_device_id;
cl_device_id devices[] = new cl_device_id[numDevices];
clGetContextInfo(context, CL_CONTEXT_DEVICES, numBytes[0],
Pointer.to(devices), null);

// Create a command-queue
cl_command_queue commandQueue =
clCreateCommandQueue(context, devices[0], 0, null);

// Allocate the memory objects for the input- and output data
cl_mem memObjects[] = new cl_mem[2];
memObjects[0] = clCreateBuffer(context,
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
Sizeof.cl_uint * srcArrayA.length, srcA, null);
memObjects[1] = clCreateBuffer(context,
CL_MEM_READ_WRITE,
Sizeof.cl_uint * (srcArrayA.length/90000), null, null);

// Create the program from the source code
cl_program program = clCreateProgramWithSource(context,
1, new String[]{programSource}, null, null);

// Build the program
clBuildProgram(program, 0, null, null, null, null);

// Create the kernel
cl_kernel kernel = clCreateKernel(program, "sampleKernel", null);

// Set the arguments for the kernel
clSetKernelArg(kernel, 0,
Sizeof.cl_mem, Pointer.to(memObjects[0]));
clSetKernelArg(kernel, 1,
Sizeof.cl_mem, Pointer.to(memObjects[1]));

// Set the work-item dimensions
long local_work_size[] = new long[]{1};
long global_work_size[] = new long[]{(srcArrayA.length/90000)*local_work_size[0]};


// Execute the kernel
clEnqueueNDRangeKernel(commandQueue, kernel, 1, null,
global_work_size, local_work_size, 0, null, null);

// Read the output data
clEnqueueReadBuffer(commandQueue, memObjects[1], CL_TRUE, 0,
(srcArrayA.length/90000) * Sizeof.cl_float, dst, 0, null, null);

// Release kernel, program, and memory objects
clReleaseMemObject(memObjects[0]);
clReleaseMemObject(memObjects[1]);
clReleaseKernel(kernel);
clReleaseProgram(program);
clReleaseCommandQueue(commandQueue);
clReleaseContext(context);


long after = System.nanoTime();

System.out.println("Time: " + (after - before) / 1e9);

}
}

根据答案中的建议,通过 CPU 的并行代码几乎与顺序代码一样快。是否还有更多可以改进的地方?

最佳答案

 for(uint j=i*90000; j < (i+1)*90000; j++){ "
+ " c[i] += a[j];"

1) 您正在使用全局内存 (c[]) 求和,这很慢。使用私有(private)变量使其更快。 像这样:

          "__kernel void "
+ "sampleKernel(__global uint *a,"
+ " __global uint *c)"
+ "{"
+ "__private uint intensity_core=0;" <---this is a private variable of each core
+ " uint i = get_global_id(0);"
+ " for(uint j=i*90000; j < (i+1)*90000; j++){ "
+ " intensity_core += a[j];" <---register is at least 100x faster than global memory
//but we cannot get rid of a[] so the calculation time cannot be less than %50
+ " }"
+ "c[i]=intensity_core;"
+ "}"; //expecting %100 speedup

现在你有 c[图像数量] 个强度总和数组。

你的 local-work-size 是 1 那么如果你有至少 160 张图像(这是你的 gpu 的核心数)那么计算将使用所有核心。

您将需要 90000*num_images 次读取和 num_images 次写入以及 90000*num_images 寄存器读/写。使用寄存器将使您的内核时间减半。

2) 你每 2 次内存访问只做 1 次数学运算。每次内存访问至少需要 10 个数学运算才能使用 gpu 峰值 Gflops 的一小部分(6490M 峰值为 250 Gflops)

您的 i7 cpu 可以轻松达到 100 Gflops,但您的内存将成为瓶颈。当您通过 pci-express 发送整个数据时,情况更糟。(HD Graphics 3000 额定为 125 GFLOPS)

 // Obtain a device ID 
cl_device_id devices[] = new cl_device_id[numDevices];
clGetDeviceIDs(platform, deviceType, numDevices, devices, null);
cl_device_id device = devices[deviceIndex];
//one of devices[] element must be your HD3000.Example: devices[0]->gpu devices[1]->cpu
//devices[2]-->HD3000

在你的程序中:

 // Obtain the cl_device_id for the first device
int numDevices = (int) numBytes[0] / Sizeof.cl_device_id;
cl_device_id devices[] = new cl_device_id[numDevices];
clGetContextInfo(context, CL_CONTEXT_DEVICES, numBytes[0],
Pointer.to(devices), null);

第一个设备可能是 gpu。

关于java - 使用 JOCL/OPENCL 加速强度总和计算,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/13543248/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com