- Java 双重比较
- java - 比较器与 Apache BeanComparator
- Objective-C 完成 block 导致额外的方法调用?
- database - RESTful URI 是否应该公开数据库主键?
我正在尝试使用 R(3.3.3 版)和 h2o(3.10.5.1 版)中的深度学习构建堆叠集成模型来预测商家流失。响应变量是二进制的。目前,我正在尝试运行代码以使用网格搜索开发的前 5 个模型构建堆叠集成模型。但是,当代码运行时,我得到 java.lang.NullPointerException 错误,输出如下:
java.lang.NullPointerException
at hex.StackedEnsembleModel.checkAndInheritModelProperties(StackedEnsembleModel.java:265)
at hex.ensemble.StackedEnsemble$StackedEnsembleDriver.computeImpl(StackedEnsemble.java:115)
at hex.ModelBuilder$Driver.compute2(ModelBuilder.java:173)
at water.H2O$H2OCountedCompleter.compute(H2O.java:1349)
at jsr166y.CountedCompleter.exec(CountedCompleter.java:468)
at jsr166y.ForkJoinTask.doExec(ForkJoinTask.java:263)
at jsr166y.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:974)
at jsr166y.ForkJoinPool.runWorker(ForkJoinPool.java:1477)
at jsr166y.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:104)
下面是我用来进行超参数网格搜索和构建集成模型的代码:
hyper_params <- list(
activation=c("Rectifier","Tanh","Maxout","RectifierWithDropout","TanhWithDropout","MaxoutWithDropout"),
hidden=list(c(50,50),c(30,30,30),c(32,32,32,32,32),c(64,64,64,64,64),c(100,100,100,100,100)),
input_dropout_ratio=seq(0,0.2,0.05),
l1=seq(0,1e-4,1e-6),
l2=seq(0,1e-4,1e-6),
rho = c(0.9,0.95,0.99,0.999),
epsilon=c(1e-10,1e-09,1e-08,1e-07,1e-06,1e-05,1e-04)
)
search_criteria <- list(
strategy = "RandomDiscrete",
max_runtime_secs = 3600,
max_models = 100,
seed=1234,
stopping_metric="misclassification",
stopping_tolerance=0.01,
stopping_rounds=5
)
dl_ensemble_grid <- h2o.grid(
hyper_params = hyper_params,
search_criteria = search_criteria,
algorithm="deeplearning",
grid_id = "final_grid_ensemble_dl",
x=predictors,
y=response,
training_frame = h2o.rbind(train, valid, test),
nfolds=5,
fold_assignment="Modulo",
keep_cross_validation_predictions = TRUE,
keep_cross_validation_fold_assignment = TRUE,
epochs=12,
max_runtime_secs = 3600,
stopping_metric="misclassification",
stopping_tolerance=0.01,
stopping_rounds=5,
seed = 1234,
max_w2=10
)
DLsortedGridEnsemble_logloss <- h2o.getGrid("final_grid_ensemble_dl",sort_by="logloss",decreasing=FALSE)
ensemble <- h2o.stackedEnsemble(x = predictors,
y = response,
training_frame = h2o.rbind(train,valid,test),
base_models = list(
DLsortedGridEnsemble_logloss@model_ids[[1]],
DLsortedGridEnsemble_logloss@model_ids[[2]],
DLsortedGridEnsemble_logloss@model_ids[[3]],
DLsortedGridEnsemble_logloss@model_ids[[4]],
DLsortedGridEnsemble_logloss@model_ids[[5]],
)
注意:到目前为止我已经意识到 h2o.stackedEnsemble 函数在只有一个基本模型时有效,并且一旦有两个或更多基本模型就会给出 Java 错误。
如果我能得到一些关于如何解决这个问题的反馈,我将不胜感激。
最佳答案
错误是指 StackedEnsembleModel.java code 的一行检查基本模型中的 training_frame
和 h2o.stackedEnsemble()
中的 training_frame
是否具有相同的校验和。我认为问题是因为您动态创建了训练框架,而不是显式定义它(即使 应该 工作,因为它最终是相同的数据)。因此,与其在网格和集成函数中设置 training_frame = h2o.rbind(train, valid, test)
,不如在代码顶部设置以下内容:
df <- h2o.rbind(train, valid, test)
然后在网格和集成函数中设置training_frame = df
。
附带说明一下,如果您使用验证框架(用于提前停止)而不是将所有数据用于训练框架,您可能会获得更好的 DL 模型。此外,如果您想使用网格中的所有模型(可能会带来更好的性能,但并非总是如此),您可以在 h2o.stackedEnsemble() 中设置
功能。 base_models = DLsortedGridEnsemble_logloss@model_ids
关于java - H2O : NullPointerException error while building ensemble model using deep learning grid,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44751866/
在使用 requests 库中的状态代码时,我遇到了一些奇怪的事情。每个 HTTP 状态代码都有一个常量,有些具有别名(例如,包括 200 的复选标记): url = 'https://httpbin
这是我得到的代码,但我不知道这两行是什么意思: o[arr[i]] = o[arr[i]] || {}; o = o[arr[i]]; 完整代码: var GLOBAL={}; GLOBAL.name
所以这个问题的答案What is the difference between Θ(n) and O(n)? 指出“基本上,当我们说算法是 O(n) 时,它也是 O(n2)、O(n1000000)、O
这是一个快速的想法;有人会说 O(∞) 实际上是 O(1) 吗? 我的意思是它不依赖于输入大小? 所以在某种程度上它是恒定的,尽管它是无限的。 或者是唯一“正确”的表达方式 O(∞)? 最佳答案 无穷
这是真的: log(A) + log(B) = log(A * B) [0] 这也是真的吗? O(log(A)) + O(log(B)) = O(log(A * B)) [1] 据我了解 O(f
我正在解决面试练习的问题,但我似乎无法找出以下问题的时间和空间复杂度的答案: Given two sorted Linked Lists, merge them into a third list i
我了解 Big-Oh 表示法。但是我该如何解释 O(O(f(n))) 是什么意思呢?是指增长率的增长率吗? 最佳答案 x = O(n)基本上意味着 x <= kn对于一些常量 k . 因此 x = O
我正在编写一个函数,该函数需要一个对象和一个投影来了解它必须在哪个字段上工作。 我想知道是否应该使用这样的字符串: const o = { a: 'Hello There' }; funct
直觉上,我认为这三个表达式是等价的。 例如,如果一个算法在 O(nlogn) + O(n) 或 O(nlogn + n) 中运行(我很困惑),我可以假设这是一个O(nlogn) 算法? 什么是真相?
根据 O'Reilly 的 Python in a Nutshell 中的 Alex Martelli,复杂度类 O(n) + O(n) = O(n)。所以我相信。但是我很困惑。他解释说:“N 的两个
O(n^2)有什么区别和 O(n.log(n)) ? 最佳答案 n^2 的复杂性增长得更快。 关于big-o - 大 O 符号 : differences between O(n^2) and O(n
每当我收到来自 MS outlook 的电子邮件时,我都会收到此标记 & nbsp ; (没有空格)哪个显示为?在 <>. 当我将其更改为 ISO-8859-1 时,浏览器页面字符集编码为 UTF-8
我很难理解 Algorithms by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani - page 24 中的以下陈述它们将 O(n) 的总和表
我在面试蛋糕上练习了一些问题,并在问题 2给出的解决方案使用两个单独的 for 循环(非嵌套),解决方案提供者声称他/她在 O(n) 时间内解决了它。据我了解,这将是 O(2n) 时间。是我想错了吗,
关于 Java 语法的幼稚问题。什么 T accept(ObjectVisitorEx visitor); 是什么意思? C# 的等价物是什么? 最佳答案 在 C# 中它可能是: O Accept(
假设我有一个长度为 n 的数组,我使用时间为 nlogn 的排序算法对它进行了排序。得到这个排序后的数组后,我遍历它以找到任何具有线性时间的重复元素。我的理解是,由于操作是分开发生的,所以时间是 O(
总和 O(1)+O(2)+ .... +O(n) 的计算结果是什么? 我在某处看到它的解决方案: O(n(n+1) / 2) = O(n^2) 但我对此并不满意,因为 O(1) = O(2) = co
这个问题在这里已经有了答案: 11 年前关闭。 Possible Duplicate: Plain english explanation of Big O 我想这可能是类里面教的东西,但作为一个自学
假设我有两种算法: for (int i = 0; i 2)更长的时间给定的一些n - 其中n这种情况的发生实际上取决于所涉及的算法 - 对于您的具体示例, n 2)分别时间,您可能会看到: Θ(n)
这个问题在这里已经有了答案: Example of a factorial time algorithm O( n! ) (4 个回答) 6年前关闭。 我见过表示为 O(X!) 的 big-o 示例但
我是一名优秀的程序员,十分优秀!