- Java 双重比较
- java - 比较器与 Apache BeanComparator
- Objective-C 完成 block 导致额外的方法调用?
- database - RESTful URI 是否应该公开数据库主键?
我正在使用一个相当大且性能密集型的 nodejs 程序来为 CJK 字体生成提示数据 (sfdhanautohint),为了更好地跟踪依赖关系,我不得不从 makefile like this 中调用 nodejs 程序数万次.
这立即让我担心这样做实际上会在启动和预热 JIT 引擎时产生大量开销,因此我决定为 nodejs 找到类似 ngen.exe
的东西。看起来是 V8 already has some support for code caching ,但是我可以做些什么来在 NodeJS 中使用它吗?
搜索 kProduceCodeCache
in NodeJS's GitHub repo 不会返回任何非捆绑 v8 结果。也许是 feature request 的时候了……
最佳答案
是的,这是自动发生的。 Node 5.7.0+ 会在您第一次运行代码时自动预缓存(为您的源预热 JIT 引擎)(自 PR #4845/2016 年 1 月此处:https://github.com/nodejs/node/pull/4845)。
重要的是要注意你甚至可以预热预热(在你的代码甚至在机器上运行之前,你可以预缓存你的代码并告诉 Node 加载它)。
致力于 Yarn、Atom 和 Babel 的 Facebook 开发人员 Andres Suarez 创建了 v8-compile-cache ,这是一个很小的模块,它将对您的代码和 require() 进行 JIT,并将您的 Node 缓存保存到您的 $TMP 文件夹中,然后在找到时使用它。查看来源,了解它是如何满足其他需求的。
如果您愿意,您可以进行一些在启动时运行的检查,如果机器架构在您的缓存文件集中,则只需加载缓存文件而不是让 Node JIT 处理一切。对于具有大量需求的真实世界的大型项目,这可以将您的加载时间减少一半或更多,并且它可以在第一次运行时完成
有利于加速容器并使它们在 500 毫秒的“微服务”启动时间之内。
重要的是要注意:
关于node.js - NodeJS 是否支持 JIT 预缓存?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34883568/
在动态语言中,动态类型代码 JIT 是如何编译成机器码的?更具体地说:编译器是否会在某个时候推断类型?还是在这些情况下严格解释? 例如,如果我有类似下面的伪代码 def func(arg) i
X86 和 AMD64 是许多计算环境(桌面、服务器和 super 计算机)最重要的架构。显然,JIT 编译器应该同时支持它们才能获得认可。 直到最近,SPARC 架构才是编译器合乎逻辑的下一步,特别
既然有如此多的 JIT 实现,每个 JIT 都会发出 native 代码。那么为什么没有人制作像 JIT2EXE 这样的工具来将 native 代码保存为 native 可执行文件呢? 最佳答案 这个
JIT 编译器将字节码编译成机器码的概念我还是不太清楚。我想知道为什么它比非 JIT 解释器产生更快的代码。有人可以给我一个很好的例子来说明这个过程是如何完成的吗? 最佳答案 假设您有一个需要执行一百
Torchscript 提供了 torch.jit.trace 和 torch.jit.script 将 pytorch 代码从 Eager 模式转换为脚本模型。从文档中,我可以理解 torch.ji
好的,我已经阅读了一些关于 JIT 和非 JIT 启用解释器之间差异的讨论,以及为什么 JIT 通常会提高性能。 但是,我的问题是: 最终,不支持 JIT 的解释器是否必须像 JIT 编译器那样将字节
有没有办法在消除 JIT 开销的同时实现 JIT 性能?最好通过将类文件编译为 native 镜像。 我研究过GCJ,但即使对于简单的程序,GCJ输出的性能也比Java JIT差很多。 最佳答案 您可
我试图更好地理解 JIT 编译器在 volatile 变量值缓存方面如何为 java 工作。考虑这个问题中提出的例子: Infinite loop problem with while loop an
我的代码是这样的: @jit(nopython=True) def sum_fn(arg1, arg2, ...argn): ..... for i in xrange(len(arg
以下代码无效: def get_unique(arr): return jnp.unique(arr) get_unique = jit(get_unique) get_unique(jnp.
我需要能够调用一个 GPU 函数,该函数本身间接调用另一个 GPU 函数: from numba import cuda, jit import numpy as np # GPU function
我有一个关于使用 Continuum 的 Accelerate 和 numba 包中的 Python CUDA 库的问题。正在使用装饰器@jit与 target = gpu同 @cuda.jit ?
有人可以指出我的方向,这可能会让我明白为什么 JIT 会取消优化我的循环? (OSR)。看起来它被 C1 编译一次,然后多次取消优化(我可以看到数十或数百个以 开头的日志) 这是包含该重要循环的类:
我引用了Oracle的以下文档: http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/underst_jit
我需要在 C++ 中运行预训练的 pytorch 神经网络模型(在 python 中训练)来进行预测。 为此,我按照此处给出的有关如何在 C++ 中加载 pytorch 模型的说明进行操作:https
我正在使用 numbas @jit 装饰器在 python 中添加两个 numpy 数组。如果我使用 @jit 与 python 相比,性能是如此之高。 然而,即使我传入 @numba.jit(nop
我是Python新手。 我编写了一些代码尝试将图片混合为新图片。 我完成了,但是浪费了太多时间。 所以我尝试使用 Numba 让代码在我的 GPU 上运行。但遇到一些警告和错误 os Ubuntu 1
我正在将我的网站从安装在共享网络托管帐户(在 DreamHost)上的 PHP v.5 转换为在 PHP 7.3.11 上运行。转换后,我开始注意到偶尔会收到以下警告: Warning: preg_m
在 Stack Overflow 上向所有编译器设计者致以问候。 我目前正在从事一个项目,该项目的重点是开发一种用于高性能计算的新脚本语言。源代码首先被编译成字节码表示。字节码然后由运行时加载,它对其
我相信 Apple 已禁止在 ARM64 架构上同时写入和执行内存,请参阅: 参见 mmap() RWX page on MacOS (ARM64 architecture)? 这使得像 jonesf
我是一名优秀的程序员,十分优秀!