- Java 双重比较
- java - 比较器与 Apache BeanComparator
- Objective-C 完成 block 导致额外的方法调用?
- database - RESTful URI 是否应该公开数据库主键?
我正在使用 tf.Tensor
和 tf.concat()
来处理大型训练数据,而且我发现连续使用 tf.concat()
会变慢。将大数据从文件加载到 tf.Tensor
的最佳方法是什么?
我认为这是在 Javascript 中按数组处理数据的常见方式。要实现这一目标,请执行以下粗略步骤。
Array.push()
将该对象添加到数组所以我想我可以像上面那样使用tf.concat()
。
tf.concat()
将张量添加到原始张量中这里有一些代码可以测量 Array.push()
和 tf.concat()
的速度
import * as tf from "@tensorflow/tfjs"
let t = tf.tensor1d([1])
let addT = tf.tensor1d([2])
console.time()
for (let idx = 0; idx < 50000; idx++) {
if (idx % 1000 == 0) {
console.timeEnd()
console.time()
console.log(idx)
}
t = tf.tidy(() => t.concat(addT))
}
let arr = []
let addA = 1
console.time()
for (let idx = 0; idx < 50000; idx++) {
if (idx % 1000 == 0) {
console.timeEnd()
console.time()
console.log(idx)
}
arr.push(addA)
}
我们可以在 Array.push()
上看到稳定的过程,但它在 tf.concat()
default: 0.150ms
0
default: 68.725ms
1000
default: 62.922ms
2000
default: 23.199ms
3000
default: 21.093ms
4000
default: 27.808ms
5000
default: 39.689ms
6000
default: 34.798ms
7000
default: 45.502ms
8000
default: 94.526ms
9000
default: 51.996ms
10000
default: 76.529ms
11000
default: 83.662ms
12000
default: 45.730ms
13000
default: 89.119ms
14000
default: 49.171ms
15000
default: 48.555ms
16000
default: 55.686ms
17000
default: 54.857ms
18000
default: 54.801ms
19000
default: 55.312ms
20000
default: 65.760ms
default: 0.009ms
0
default: 0.388ms
1000
default: 0.340ms
2000
default: 0.333ms
3000
default: 0.317ms
4000
default: 0.330ms
5000
default: 0.289ms
6000
default: 0.299ms
7000
default: 0.291ms
8000
default: 0.320ms
9000
default: 0.284ms
10000
default: 0.343ms
11000
default: 0.327ms
12000
default: 0.317ms
13000
default: 0.329ms
14000
default: 0.307ms
15000
default: 0.218ms
16000
default: 0.193ms
17000
default: 0.234ms
18000
default: 1.943ms
19000
default: 0.164ms
20000
default: 0.148ms
最佳答案
虽然 tf.concat
和 Array.push
函数看起来和行为相似,但有一个很大的区别:
tf.concat
从输入创建一个新张量Array.push
将输入添加到第一个数组tf.concat
const a = tf.tensor1d([1, 2]);
const b = tf.tensor1d([3]);
const c = tf.concat([a, b]);
a.print(); // Result: Tensor [1, 2]
b.print(); // Result: Tensor [3]
c.print(); // Result: Tensor [1, 2, 3]
结果变量 c
是一个新的张量,而 a
和 b
没有改变。
Array.push
const a = [1,2];
a.push(3);
console.log(a); // Result: [1,2,3]
这里直接修改变量a
对于运行时速度,这意味着 tf.concat
在添加输入之前将所有张量值复制到新张量。显然,需要复制的数组越大,花费的时间就越多。与此相反,Array.push
不会创建数组的副本,因此无论数组有多大,运行时都或多或少相同。
请注意,这是“设计使然”的,因为张量是不可变的,因此对现有张量的每次操作都会创建一个新的张量。引自 docs :
Tensors are immutable, so all operations always return new Tensors and never modify input Tensors.
因此,如果您需要从输入数据创建一个大张量,建议您先从您的文件中读取所有数据并将其与“普通”JavaScript 函数合并,然后再从中创建一个张量。
如果您的数据集太大以至于由于内存限制需要分块处理,您有两个选择:
trainOnBatch
功能trainOnBatch
函数允许训练一批数据,而不是使用完整的数据集。因此,您可以在训练代码之前将代码分成合理的批处理,这样就不必一次将所有数据合并在一起。
另一个答案已经涵盖了基础知识。这将允许您使用 JavaScript generator function准备数据。我建议使用生成器语法而不是迭代器工厂(在另一个答案中使用),因为它是更现代的 JavaScript 语法。
示例(取自 docs ):
function* dataGenerator() {
const numElements = 10;
let index = 0;
while (index < numElements) {
const x = index;
index++;
yield x;
}
}
const ds = tf.data.generator(dataGenerator);
然后您可以使用 fitDataset
训练模型的函数。
关于javascript - 使用 Tensorflow.js 和 tf.Tensor 处理大数据的最佳方式是什么?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55929960/
在 Tensorflow(从 v1.2.1 开始)中,似乎有(至少)两个并行 API 来构建计算图。 tf.nn 中有函数,如 conv2d、avg_pool、relu、dropout,tf.laye
我正在处理眼睛轨迹数据和卷积神经网络。我被要求使用 tf.reduce_max(lastconv, axis=2)代替 MaxPooling 层和 tf.reduce_sum(lastconv,axi
TensorFlow 提供了 3 种不同的数据存储格式 tf.train.Feature .它们是: tf.train.BytesList tf.train.FloatList tf.train.In
我正在尝试为上下文强盗问题 (https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part
我在使用 Tensorflow 时遇到问题: 以下代码为卷积 block 生成正确的图: def conv_layer(self, inputs, filter_size = 3, num_filte
我正在将我的训练循环迁移到 Tensorflow 2.0 API .在急切执行模式下,tf.GradientTape替换 tf.gradients .问题是,它们是否具有相同的功能?具体来说: 在函数
tensorflow 中 tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) 的目的是什么? 更多上下文:
我一直在努力学习 TensorFlow,我注意到不同的函数用于相同的目标。例如,为了平方变量,我看到了 tf.square()、tf.math.square() 和 tf.keras.backend.
我正在尝试使用自动编码器开发图像着色器。有 13000 张训练图像。如果我使用 tf.data,每个 epoch 大约需要 45 分钟,如果我使用 tf.utils.keras.Sequence 大约
我尝试按照 tensorflow 教程实现 MNIST CNN 神经网络,并找到这些实现 softmax 交叉熵的方法给出了不同的结果: (1) 不好的结果 softmax = tf.nn.softm
其实,我正在coursera上做deeplearning.ai的作业“Art Generation with Neural Style Transfer”。在函数 compute_layer_styl
训练神经网络学习“异或” 我正在尝试使用“批量归一化”,我创建了一个批量归一化层函数“batch_norm1”。 import tensorflow as tf import nump
我正在尝试协调来自 TF“图形和 session ”指南以及 TF“Keras”指南和 TF Estimators 指南的信息。现在在前者中它说 tf.Session 使计算图能够访问物理硬件以执行图
我正在关注此处的多层感知器示例:https://github.com/aymericdamien/TensorFlow-Examples我对函数 tf.nn.softmax_cross_entropy
回到 TensorFlow = 2.0 中消失了。因此,像这样的解决方案...... with tf.variable_scope("foo"): with tf.variable_scope
我按照官方网站中的步骤安装了tensorflow。但是,在该网站中,作为安装的最后一步,他们给出了一行代码来“验证安装”。但他们没有告诉这段代码会给出什么输出。 该行是: python -c "imp
代码: x = tf.constant([1.,2.,3.], shape = (3,2,4)) y = tf.constant([1.,2.,3.], shape = (3,21,4)) tf.ma
我正在尝试从 Github 训练一个 3D 分割网络.我的模型是用 Keras (Python) 实现的,这是一个典型的 U-Net 模型。模型,总结如下, Model: "functional_3"
我正在使用 TensorFlow 2。我正在尝试优化一个函数,该函数使用经过训练的 tensorflow 模型(毒药)的损失。 @tf.function def totalloss(x): x
试图了解 keras 优化器中的 SGD 优化代码 (source code)。在 get_updates 模块中,我们有: # momentum shapes = [K.int_shape(p) f
我是一名优秀的程序员,十分优秀!