- Java 双重比较
- java - 比较器与 Apache BeanComparator
- Objective-C 完成 block 导致额外的方法调用?
- database - RESTful URI 是否应该公开数据库主键?
我一直在努力实现 Tensorflow's simple audio recognition到 iphone 应用程序。经过一些研究,我发现我需要将 Tensorflow 的卡住图 .pb 文件转换为核心 ML 模型,然后在 iOS 应用程序中使用它。所以我尝试关注 this sample 和引用 this转换器。但看起来转换器主要是为了转换将图像作为输入的模型而编写的。但是我的模型应该能够将音频 .wav 文件作为输入。 `
import tfcoreml as tf_converter
tf_converter.convert(tf_model_path = 'my_frozen_graph.pb',
mlmodel_path = 'my_model.mlmodel',
output_feature_names = ['labels_softmax:0'],
class_labels = 'classes.txt'
)
当我尝试使用上述代码将我的图表转换为核心 ML 模型时,我收到以下错误响应。
(env3) minimaci73$ python model.py
WARNING:root:Keras version 2.2.0 detected. Last version known to be fully compatible of Keras is 2.1.6 .
WARNING:root:TensorFlow version 1.8.0 detected. Last version known to be fully compatible is 1.5.0 .
Loading the TF graph...
Graph Loaded.
Traceback (most recent call last):
File "/Users/minimaci73/anaconda3/envs/env3/lib/python3.6/site-packages/tfcoreml/_tf_coreml_converter.py", line 204, in _convert_pb_to_mlmodel
shape_list = shape.as_list()
File "/Users/minimaci73/anaconda3/envs/env3/lib/python3.6/site-packages/tensorflow/python/framework/tensor_shape.py", line 900, in as_list
raise ValueError("as_list() is not defined on an unknown TensorShape.")
ValueError: as_list() is not defined on an unknown TensorShape.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "model.py", line 6, in <module>
class_labels = 'conv_labels.txt'
File "/Users/minimaci73/anaconda3/envs/env3/lib/python3.6/site-packages/tfcoreml/_tf_coreml_converter.py", line 586, in convert
custom_conversion_functions=custom_conversion_functions)
File "/Users/minimaci73/anaconda3/envs/env3/lib/python3.6/site-packages/tfcoreml/_tf_coreml_converter.py", line 206, in _convert_pb_to_mlmodel
raise ValueError('Please provide the shape for the input {} through the argument \'input_name_shape_dict\''.format(input_name))
ValueError: Please provide the shape for the input wav_data:0 through the argument 'input_name_shape_dict'
(env3) minimaci73$
根据上一条错误消息,我需要输入 input wav_data:0
的输入形状.所以我创建了教程中提到的卡住图的文本摘要,并查找了 wav_data
输入形状。但是输入形状是<unknown>
为了这。
我想知道是否有其他方法可以将此文件转换为核心 ML 模型?或者有没有办法直接在 ios swift 应用程序中使用卡住图 .pb 文件?
Tensorflow-experimental Swift 框架的文档也很少。如果你们有这方面的好资源,请分享。
Update
根据控制台日志,我降级了 keras
和 tensorflow
版本以及根据 Matthijs 的回答,我添加了 input_name_shape_dict = { "import/wav_data:0" : [1, 16, 44100, 1]
现在控制台以不同的方式显示错误
(env3) minimaci73$ python model.py
Loading the TF graph...
Traceback (most recent call last):
File "model.py", line 7, in <module>
class_labels = 'conv_labels.txt'
File "/Users/minimaci73/anaconda3/envs/env3/lib/python3.6/site-packages/tfcoreml/_tf_coreml_converter.py", line 586, in convert
custom_conversion_functions=custom_conversion_functions)
File "/Users/minimaci73/anaconda3/envs/env3/lib/python3.6/site-packages/tfcoreml/_tf_coreml_converter.py", line 153, in _convert_pb_to_mlmodel
tf.import_graph_def(gdef, name='')
File "/Users/minimaci73/anaconda3/envs/env3/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py", line 316, in new_func
return func(*args, **kwargs)
File "/Users/minimaci73/anaconda3/envs/env3/lib/python3.6/site-packages/tensorflow/python/framework/importer.py", line 541, in import_graph_def
raise ValueError('No op named %s in defined operations.' % node.op)
ValueError: No op named DecodeWav in defined operations.
(env3) minimaci73$ python model.py
最佳答案
您可以向转换器提供输入形状:
input_name_shape_dict={ "import/wav_data:0" : [1, input_height, input_width, channels] })
如果您的数据是一维的,则高度和宽度应为 1, channel 应为数据的长度。
您可能还会遇到其他转换错误,但这是第一步。 :-)(tfcoreml 需要知道输入形状,以便它可以使用一些假数据运行模型。)
关于python - 如何将 Tensorflow Simple Audio Recognition frozen graph(.pb) 转换为 Core ML 模型?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53626504/
我是一名优秀的程序员,十分优秀!