- Java 双重比较
- java - 比较器与 Apache BeanComparator
- Objective-C 完成 block 导致额外的方法调用?
- database - RESTful URI 是否应该公开数据库主键?
我有以下看似相似的方法,do1
和 do2
:
class Demo<A>{
public <C> Iterable<C> do1(List<? super C> _a) {
return null;
}
public <C extends D, D> Iterable<C> do2(List<D> _a) {
return null;
}
{
List<? extends A> leA = null;
do2(leA);
do1(leA);
}
}
当我编译以上代码 (javac 1.8.0_92) 时,调用 do2(leA)
有效,而 do1(leA)
失败。
required: List<? super C>
found: List<CAP#1>
reason: cannot infer type-variable(s) C
(argument mismatch; List<CAP#1> cannot be converted to List<? super C>)
where C,A are type-variables:
C extends Object declared in method <C>do1(List<? super C>)
A extends Object declared in class Cache
where CAP#1 is a fresh type-variable:
CAP#1 extends A from capture of ? extends A
现在我想知道:这是由于 javac 中类型推断的不完整实现,还是我通过调用 do1(leA)
创建了一个无效的类型树?
据我所知:
do1(leA)
中:Capture(? extends A)
成为 C 的父类(super class)型do2(leA)
中:Capture(? extends A)
成为 C 的父类(super class)型(间接通过:Capture(? extends A) == D
和 D :> C
意味着在这两种情况下 C
应该(没有错误)解析为 "? extends A"
最佳答案
您需要extends C
而不是super C
:
public <C> Iterable<C> do1(List<? extends C> _a) {
C
的super
是祖先类,而不是子类。
关于java - 为什么java推理失败,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37071678/
现在,我正在使用 MALLET 包中的 LDA 主题建模工具对我的文档进行一些主题检测。最初一切都很好,我从中得到了 20 个主题。但是,当我尝试使用该模型推断新文档时,结果有点莫名其妙。 例如,我故
我正在使用 Jersey 在 Scala 中开发 REST web 服务JAX-RS 引用实现,我收到一个奇怪的错误。 我正在尝试创建一个 ContentDisposition对象使用 Content
以下两个用于计算斐波那契数列第 n 项的 Haskell 程序具有截然不同的性能特征: fib1 n = case n of 0 -> 1 1 -> 1 x -> (fib
所以在来自 another question 的评论中,我刚刚看到了这个计算字符串中 L 数量的例子: "hello".count('l'==) 而且够疯狂……它有效。 从完全扩展的版本开始,我们有:
我在 android 上运行训练有素的 yolov2 网络时遇到问题。我正在使用这个项目进行测试 https://github.com/szaza/android-yolo-v2 . 提供的网络工作正
我目前在我的 iOS 应用程序中使用 Tensorflow 的 Swift 版本。我的模型工作正常,但我无法将数据复制到第一个张量中,因此我可以使用神经网络来检测东西。 我咨询了the testsui
我有一个 SSD tflite 检测模型,正在台式计算机上使用 Python 运行。就目前而言,我的下面的脚本将单个图像作为推理的输入,并且运行良好: # Load TFLite model
我所拥有的:在 Tensorflow 中经过训练的递归神经网络。 我想要的:一个可以尽可能快地运行这个网络的移动应用程序(只有推理模式,没有训练)。 我相信有多种方法可以实现我的目标,但我希望您能提供
**我得到了一些让我的函数成为纯通用函数的建议,这可行,但我更愿意将函数限制为仅接受 Base 及其子项。 在创建可以接受可变模板类基类型参数的函数时遇到问题,而该函数实际上将使用从 Base 派生的
我想使用 TF 2.0 在我的 GPU 集群上运行分布式预测。我使用 MirroredStrategy 训练了一个用 Keras 制作的 CNN 并保存了它。我可以加载模型并在其上使用 .predic
实现一个 C++ 代码来加载一个已经训练好的模型然后获取它而不是使用 Python 真的值得吗? 我想知道这一点,因为据我所知,用于 python 的 Tensorflow 是幕后的 C++(对于 n
我将在网站上提供 pytorch 模型(resnet18)。 然而,在 cpu(amd3600) 中进行推理需要 70% 的 cpu 资源。 我不认为服务器(heroku)可以处理这个计算。 有什么方
为了充分利用 CPU/GPU,我运行了多个对不同数据集进行 DNN 推理(前馈)的进程。由于进程在前馈期间分配了 CUDA 内存,因此我收到了 CUDA 内存不足错误。为了缓解这种情况,我添加了 to
你知道用 1 个 GPU tensorflow 对 2 个 python 进程进行推理的优雅方法吗? 假设我有 2 个进程,第一个是分类猫/狗,第二个是分类鸟/飞机,每个进程运行不同的 tensorf
我是 Scala 的初学者,不明白这里发生了什么: 给定: val reverse:Option[MyObject] = ... 并且myObject.isNaire返回 bool 值。 如果我这样做
我正在尝试通过用我常用的语言 Clojure 实现算法 W 来自学 Hindley-Milner 类型推理。我遇到了 let 推理的问题,我不确定我是否做错了什么,或者我期望的结果是否需要算法之外的东
我正在尝试通过用我常用的语言 Clojure 实现算法 W 来自学 Hindley-Milner 类型推理。我遇到了 let 推理的问题,我不确定我是否做错了什么,或者我期望的结果是否需要算法之外的东
我做了一个项目,基本上使用带有 tensorflow 的 googles object detection api。 我所做的只是使用预训练模型进行推理:这意味着实时对象检测,其中输入是网络摄像头的视
我有一台带有多个 GPU 的服务器,我想在 Java 应用程序内的模型推理期间充分利用它们。默认情况下,tensorflow 占用所有可用的 GPU,但仅使用第一个。 我可以想到三个选项来解决这个问题
这个预测时间190ms,应该是cpu版本 昨天修改了个OpenCV DNN支持部署YOLOv5,6.1版本的Python代码,今天重新转换为C 代码了!貌似帧率比之前涨了点!说明C的确是比Python
我是一名优秀的程序员,十分优秀!