gpt4 book ai didi

c++ - 赛通 : exposing C++ classes with nested typedef (s)

转载 作者:搜寻专家 更新时间:2023-10-31 02:14:42 26 4
gpt4 key购买 nike

根据 this stackoverflow 中的问题/答案,无法在 cython 中直接重写 C++ 嵌套 typedef。我遇到了这样的问题,我不知道哪种方法是正确/最佳的。

让我更具体地举个例子。下面,您可以找到两个 C++ 文件(一个 header.h 和一个 .cpp)和两个对应的 cython 文件(一个 .pxd 和一个 .pyx)的内容。在名为 cpp_graph.h 的 C++ 头文件中,您可以看到嵌套的 typedef 声明;例如,对应于 Graph::iterator::nn_iterator我不知道如何在相应的 graph.pxd 文件中公开它。 或者,换句话说,我不知道什么是“官方”或“标准”的方式来做到这一点。

一些相关信息。如果您检查 STL 的 cython 包装器,您可以找到嵌套的 typedef。例如hereutility.pxdhere 中在 vector.pxd 文件中。但是,ctypedef 的那些嵌套用法仅用于模板声明。 嵌套的 typedef 是否仅适用于 cython 中的模板声明?

C++ 头文件:

// file : cpp_graph.h

#ifndef Included_cpp_graph
#define Included_cpp_graph

#include <cassert>
#include <cstddef>
#include <set>
#include <map>
#include <iostream>
#include <string>
#include <sstream>
#include "to_string_patch.h"

#ifndef Defined_bint
#define Defined_bint
typedef int bint;
#endif

class Graph {
public:
typedef std::set< int > t_nn;
typedef std::set< int >::iterator nn_iterator;
typedef std::map< int , t_nn > t_node_to_nn;
class iterator
{
// To iterate over nodes.
friend class Graph;
public:
typedef iterator self_type;
typedef int value_type;
typedef int & reference;
typedef int * pointer;
typedef t_node_to_nn::iterator map_iterator;
typedef std::forward_iterator_tag iterator_category;
iterator( map_iterator map_it ) : _map_it( map_it ) { }
self_type operator++() { _map_it++; return *this; } // PREFIX
self_type operator++(int junk) { self_type i = *this; _map_it++; return i; } // POSTFIX
value_type operator*() { return ( * _map_it ).first; } // Return the index "i"
Graph::t_nn * operator->() { return & ( * _map_it ).second; } // Return a pointer to the contained t_nn.
bool operator==( const self_type & rhs ) { return _map_it == rhs._map_it; }
bool operator!=( const self_type & rhs ) { return _map_it != rhs._map_it; }
private:
map_iterator _map_it;
};
class const_iterator
{
friend class Vertex;
public:
typedef const_iterator self_type;
typedef int value_type;
typedef int & reference;
typedef int * pointer;
typedef t_node_to_nn::iterator map_iterator;
typedef std::forward_iterator_tag iterator_category;
const_iterator( map_iterator map_it ) : _map_it( map_it ) { }
self_type operator++() { _map_it++; return *this; } // PREFIX
self_type operator++(int junk) { self_type i = *this; _map_it++; return i; } // POSTFIX
const value_type operator*() { return ( * _map_it ).first; } // Return the index "i"
const Graph::t_nn * operator->() { return & ( * _map_it ).second; } // Return a pointer to the contained t_nn.
bool operator==( const self_type& rhs ) { return _map_it == rhs._map_it; }
bool operator!=( const self_type& rhs ) { return _map_it != rhs._map_it; }
private:
map_iterator _map_it;
};
iterator begin() { _node_to_nn.begin(); }
iterator end() { _node_to_nn.end(); }
const_iterator begin() const { _node_to_nn.begin(); }
const_iterator end() const { _node_to_nn.end(); }
nn_iterator nn_begin( int i ) { assert( has_node( i ) ); return _node_to_nn[ i ].begin(); }
nn_iterator nn_end( int i ) { assert( has_node( i ) ); return _node_to_nn[ i ].end(); }
Graph() : _num_links( 0 ) {}
~Graph() { _node_to_nn.clear(); _num_links = 0; }
Graph & subgraph( std::set< int > & nodes ) {
Graph * S = new Graph();
for ( std::set< int >::iterator n_it = nodes.begin() ; n_it != nodes.end() ; n_it++ ) {
int i = ( * n_it );
assert( has_node( i ) );
for ( nn_iterator j_it = nn_begin( i ) ; j_it != nn_end( i ) ; j_it++ ) {
int j = ( * j_it );
if ( nodes.count( j ) > 0 ) { S -> add_link( i , j ); }
}
}
return ( * S );
}
int num_nodes() { return _node_to_nn.size(); }
int num_links() { return _num_links; }
int degree( int i ) { return _node_to_nn[ i ].size(); }
double avrg_degree() { return ( ( double ) 2 * num_nodes() ) / ( ( double ) _num_links ); }
bool has_node( int i ) { return _node_to_nn.count( i ) > 0; }
bool has_nn( int i , int j ) {
if ( has_node( i ) ) { return _node_to_nn[ i ].count( j ) > 0; }
return false;
}
bool has_link( int i , int j ) { return has_nn( i , j ); }
void add_node( int i ) { _node_to_nn[ i ].count( 0 ); } // Trick...
void add_link( int i , int j ) {
if ( has_link( i , j ) ) { return; }
_node_to_nn[ i ].insert( j );
_node_to_nn[ j ].insert( i );
_num_links += 1;
}
void del_link( int i , int j ) {
if ( has_link( i , j ) ) {
_node_to_nn[ i ].erase( j );
_node_to_nn[ j ].erase( i );
_num_links -= 1;
}
}
void del_node( int i ) {
iterator i_it = _node_to_nn.find( i );
for( nn_iterator j_it = i_it -> begin() ; j_it != i_it -> end() ; j_it++ ) { del_link( i , ( * j_it ) ); }
_node_to_nn.erase( i_it._map_it );
}
void clear_node( int i ) { del_node( i ); add_node( i ); } // Trick...
private:
t_node_to_nn _node_to_nn;
int _num_links;
};

std::ostream& operator<<( std::ostream& os , Graph & G );

typedef Graph::t_nn Graph_t_nn
typedef

#endif // Included_cpp_graph

C++ .cpp 文件:

// cpp_graph.cpp

#include <cassert>
#include <cstddef>
#include <set>
#include <map>
#include <iostream>
#include <string>
#include <sstream>
#include "to_string_patch.h"
#include "cpp_graph.h"

std::ostream& operator<<( std::ostream& os , Graph & G ) {
os << "Graph{";
// Print nodes.
for ( Graph::iterator i_it = G.begin() ; i_it != G.end() ; i_it++ ) {
int i = ( * i_it );
os << " " << patch::to_string( i );
}
os << " |";
// Print edges.
for ( Graph::iterator i_it = G.begin() ; i_it != G.end() ; i_it++ ) {
int i = ( * i_it );
for ( Graph::nn_iterator j_it = G.nn_begin( i ) ; j_it != G.nn_end( i ) ; j_it++ ) {
int j = ( * j_it );
if ( i < j ) { os << " " + patch::to_string( i ) << ":" << patch::to_string( j ); }
}
}
os << " }"; // << std::endl;
return os;
}

// === For testing purposes ===.
/*
int main() {

Graph G;
G.add_link( 1 , 2 );
G.add_link( 1 , 3 );
G.add_link( 2 , 3 );
G.add_link( 3 , 4 );
G.add_link( 4 , 5 );
G.add_link( 4 , 6 );
G.add_link( 5 , 6 );
std::cout << G << std::endl;

G.del_link( 3 , 4 );
std::cout << G << std::endl;

G.del_node( 3 );
std::cout << G << std::endl;

G.clear_node( 2 );
std::cout << G << std::endl;

G.add_link( 100 , 101 );
std::cout << G << std::endl;
std::cout << "N = " << G.num_nodes() << " M = " << G.num_links() << std::endl;

}
*/

cython .pxd 文件:

# file : graph.pxd

# === Cython cimports ===

from libcpp cimport bool
from libcpp.set cimport set as cset
from libcpp.map cimport map as cmap
from cython.operator cimport dereference as deref, preincrement as inc

# === Exposing the C++ Graph class ===

cdef extern from "cpp_graph.h":
cdef cppclass Graph:
#public:
ctypedef cset[ int ] t_nn
ctypedef cset[ int ].iterator nn_iterator
ctypedef cmap[ int , t_nn ] t_node_to_nn
cppclass iterator:
#friend class Graph;
#public:
typedef iterator self_type
typedef int value_type
typedef int & reference
typedef int * pointer
typedef t_node_to_nn::iterator map_iterator
typedef std::forward_iterator_tag iterator_category
iterator( map_iterator map_it )
self_type operator++()
self_type operator++(int junk)
value_type operator*()
Graph::t_nn * operator->()
bool operator==( const self_type & rhs )
bool operator!=( const self_type & rhs )
#private:
# map_iterator _map_it;
cppclass const_iterator:
#friend class Vertex;
#public:
typedef const_iterator self_type
typedef int value_type
typedef int & reference
typedef int * pointer
typedef t_node_to_nn::iterator map_iterator
typedef std::forward_iterator_tag iterator_category
const_iterator( map_iterator map_it )
self_type operator++()
self_type operator++(int junk)
const value_type operator*()
const Graph::t_nn * operator->()
bool operator==( const self_type& rhs )
bool operator!=( const self_type& rhs )
#private:
# map_iterator _map_it;
iterator begin()
iterator end()
const_iterator begin() const
const_iterator end() const
nn_iterator nn_begin( int i )
nn_iterator nn_end( int i )
Graph()
~Graph()
Graph & subgraph( std::set< int > & nodes )
int num_nodes()
int num_links()
int degree( int i )
double avrg_degree()
bool has_node( int i )
bool has_nn( int i , int j )
bool has_link( int i , int j )
void add_node( int i )
void add_link( int i , int j )
void del_link( int i , int j )
void del_node( int i )
void clear_node( int i )
#private:
#t_node_to_nn _node_to_nn;
#int _num_links;

std::ostream& operator<<( std::ostream& os , Graph & G )

# === Python Wrapper for the C++ Graph class ===

cdef class PyGraph:

# === Data-members ===

# Pointer to a C++ Graph object.
cdef Graph * _c_graph

# === Function-members ===

# @ graph.pyx

和 cython .pyx 文件:

# file : graph.pyx

# === Cython cimports ===

from libcpp cimport bool
from libcpp.set cimport set as cset
from libcpp.map cimport map as cmap
from cython.operator cimport dereference as deref, preincrement as inc

# === Ctypedefs for Graph class ===

# @ graph.pxd

# === Exposing the C++ Graph class ===

cdef extern from "cpp_graph2.h":
cdef cppclass Graph:
#public:
ctypedef cset[ int ] t_nn
ctypedef cset[ int ].iterator nn_iterator
ctypedef cmap[ int , t_nn ] t_node_to_nn
cppclass iterator:
#friend class Graph;
#public:
typedef iterator self_type
typedef int value_type
typedef int & reference
typedef int * pointer
typedef t_node_to_nn::iterator map_iterator
typedef std::forward_iterator_tag iterator_category
iterator( map_iterator map_it )
self_type operator++()
self_type operator++(int junk)
value_type operator*()
Graph::t_nn * operator->()
bool operator==( const self_type & rhs )
bool operator!=( const self_type & rhs )
#private:
# map_iterator _map_it;
cppclass const_iterator:
#friend class Vertex;
#public:
typedef const_iterator self_type
typedef int value_type
typedef int & reference
typedef int * pointer
typedef t_node_to_nn::iterator map_iterator
typedef std::forward_iterator_tag iterator_category
const_iterator( map_iterator map_it )
self_type operator++()
self_type operator++(int junk)
const value_type operator*()
const Graph::t_nn * operator->()
bool operator==( const self_type& rhs )
bool operator!=( const self_type& rhs )
#private:
# map_iterator _map_it;
iterator begin()
iterator end()
const_iterator begin() const
const_iterator end() const
nn_iterator nn_begin( int i )
nn_iterator nn_end( int i )
Graph()
~Graph()
Graph & subgraph( std::set< int > & nodes )
int num_nodes()
int num_links()
int degree( int i )
double avrg_degree()
bool has_node( int i )
bool has_nn( int i , int j )
bool has_link( int i , int j )
void add_node( int i )
void add_link( int i , int j )
void del_link( int i , int j )
void del_node( int i )
void clear_node( int i )
#private:
#t_node_to_nn _node_to_nn;
#int _num_links;

# === Python Wrapper for the C++ Graph class ===

cdef class PyGraph:

# === Data-members ===

# @ graph.pxd

# === Function-members ===

def __cinit__( self ):

self._c_graph = new Graph()

def __dealloc__( self ):

del self._c_graph

# TODO : implement the methods for adding and deleting nodes/links.

最后,当我尝试编译/构建它时,出现以下错误:

###########################################################
# setup build_ext...
###########################################################

Error compiling Cython file:
------------------------------------------------------------
...
# === Exposing the C++ Graph class ===

cdef extern from "cpp_graph2.h":
cdef cppclass Graph:
#public:
ctypedef cset[ int ] t_nn
^
------------------------------------------------------------

ExcessDegreeModel/graph.pxd:51:8: Expected an identifier, found 'ctypedef'
...

最佳答案

我已经使用 namespace 关键字获得嵌套定义,指定嵌套声明。就像,如果你有名为 mystuff.hpp 的 C++ header 中的以下内容:

namespace MyStuff {
struct Outer {
struct Inner {
int value;
};
Inner member;
};
}

……你可以像这样对这些结构进行 encython:

cdef extern from "mystuff.hpp" namespace "MyStuff::Outer":
cppclass Inner:
int value

cdef extern from "mystuff.hpp" namespace "MyStuff":
cppclass Outer:
Inner member

…如果你真的把 C++ 领域的所有东西都包裹在一个命名空间中,它读起来会更连贯,如所写的那样(否则第二个 cdef 在其声明中没有 namespace,在我看来,这看起来更奇怪)。

我有许多现实世界中当前正在使用的示例:one such example is here , another one is here .

关于c++ - 赛通 : exposing C++ classes with nested typedef (s),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39598499/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com