gpt4 book ai didi

c++ - 将一组数字拆分为成员子组

转载 作者:搜寻专家 更新时间:2023-10-31 02:11:51 24 4
gpt4 key购买 nike

我想问一下如何检查一组数字是否可以分成子组(每个子组必须有 3 个成员),并且每个子组成员的总和都相等。这么多组合怎么查?

示例:

int numbers[] = {1, 2, 5, 6, 8, 3, 2, 4, 5};

可以分为

{1, 5, 6}, {2, 8, 2}, {3, 4, 5}

最佳答案

可以遵循递归方法,其中一个保留两个数组:

  • 包含每个子组总和的数组。
  • 一个 bool 数组,用于检查元素是否已被纳入一些子组或不。

您要求 3 个子组,即本文其余部分中的 K = 3,但请记住,在处理递归时,应考虑基本情况。在这种情况下,我们将关注两个基本情况:

  1. 如果K为1,那么我们已经有了答案,完整的数组只有具有相同总和的子集。
  2. 如果 N < K,则不可能将数组分成子集等和,因为我们不能将数组分成超过 N 个部分。

如果组的和不能被K整除,那么就不可能将它整除。只有当 k 除和时,我们才会继续。我们的目标减少了将组划分为 K 个子组,其中每个子组的总和应该是该组的总和除以 K。

在下面的代码中,编写了一个递归方法,它试图将数组元素添加到某个子集中。如果这个子集的总和达到要求的总和,我们递归地迭代下一部分,否则我们回溯不同的元素集。如果总和达到所需总和的子集数为(K-1),我们标记可以将数组划分为总和相等的 K 个部分,因为剩余元素的总和已等于所需总和。

引自here ,而在您的情况下,您将设置 K = 3,如示例代码中所示。

// C++ program to check whether an array can be
// subsetitioned into K subsets of equal sum
#include <bits/stdc++.h>
using namespace std;

// Recursive Utility method to check K equal sum
// subsetition of array
/**
array - given input array
subsetSum array - sum to store each subset of the array
taken - boolean array to check whether element
is taken into sum subsetition or not
K - number of subsetitions needed
N - total number of element in array
curIdx - current subsetSum index
limitIdx - lastIdx from where array element should
be taken */
bool isKPartitionPossibleRec(int arr[], int subsetSum[], bool taken[],
int subset, int K, int N, int curIdx, int limitIdx)
{
if (subsetSum[curIdx] == subset)
{
/* current index (K - 2) represents (K - 1) subsets of equal
sum last subsetition will already remain with sum 'subset'*/
if (curIdx == K - 2)
return true;

// recursive call for next subsetition
return isKPartitionPossibleRec(arr, subsetSum, taken, subset,
K, N, curIdx + 1, N - 1);
}

// start from limitIdx and include elements into current subsetition
for (int i = limitIdx; i >= 0; i--)
{
// if already taken, continue
if (taken[i])
continue;
int tmp = subsetSum[curIdx] + arr[i];

// if temp is less than subset then only include the element
// and call recursively
if (tmp <= subset)
{
// mark the element and include into current subsetition sum
taken[i] = true;
subsetSum[curIdx] += arr[i];
bool nxt = isKPartitionPossibleRec(arr, subsetSum, taken,
subset, K, N, curIdx, i - 1);

// after recursive call unmark the element and remove from
// subsetition sum
taken[i] = false;
subsetSum[curIdx] -= arr[i];
if (nxt)
return true;
}
}
return false;
}

// Method returns true if arr can be subsetitioned into K subsets
// with equal sum
bool isKPartitionPossible(int arr[], int N, int K)
{
// If K is 1, then complete array will be our answer
if (K == 1)
return true;

// If total number of subsetitions are more than N, then
// division is not possible
if (N < K)
return false;

// if array sum is not divisible by K then we can't divide
// array into K subsetitions
int sum = 0;
for (int i = 0; i < N; i++)
sum += arr[i];
if (sum % K != 0)
return false;

// the sum of each subset should be subset (= sum / K)
int subset = sum / K;
int subsetSum[K];
bool taken[N];

// Initialize sum of each subset from 0
for (int i = 0; i < K; i++)
subsetSum[i] = 0;

// mark all elements as not taken
for (int i = 0; i < N; i++)
taken[i] = false;

// initialize first subsubset sum as last element of
// array and mark that as taken
subsetSum[0] = arr[N - 1];
taken[N - 1] = true;
if (subset < subsetSum[0])
return false;

// call recursive method to check K-subsetition condition
return isKPartitionPossibleRec(arr, subsetSum, taken,
subset, K, N, 0, N - 1);
}

// Driver code to test above methods
int main()
{
int arr[] = {2, 1, 4, 5, 3, 3};
int N = sizeof(arr) / sizeof(arr[0]);
int K = 3;

if (isKPartitionPossible(arr, N, K))
cout << "Partitions into equal sum is possible.\n";
else
cout << "Partitions into equal sum is not possible.\n";
}

输出:

Partitions into equal sum is possible.


相关链接:23 .

关于c++ - 将一组数字拆分为成员子组,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42936681/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com