gpt4 book ai didi

c++ - 如何将此代码从 Dijkstra 转换为 Astar?

转载 作者:搜寻专家 更新时间:2023-10-31 01:14:30 39 4
gpt4 key购买 nike

所以我有一个项目,由于速度原因,我想切换到 Astar。

但 C++ 不是我的强项。谁能帮我(或告诉我怎么做...)将算法从 Dijkstra 转换为 Astar?

我找到了这个 Astar 实现: http://code.google.com/p/a-star-algorithm-implementation/

但我不知道如何将它与我现有的代码一起使用。

这是得到算法的图形文件:

#include "Graph.h"
#include <iostream>
#include <algorithm>
#include <stack>

Graph::Graph(void)
{
}

Graph::~Graph(void)
{
while(!mNodes.empty())
{
delete mNodes.back();
mNodes.pop_back();
}
}

void Graph::addNode(int name, bool exists, Node** NodeID )
{
Node* pStart = NULL;
mNodes.push_back(new Node(name,exists));
std::vector<Node*>::iterator itr;
itr = mNodes.begin()+mNodes.size()-1;
pStart = (*itr);
if(exists == true)pStart->DoesExist_yes();
*NodeID = pStart;
}

void Graph::connect_oneway(Node* pFirst, Node* pSecond, int moveCost)
{
if(pFirst != NULL && pSecond != NULL)
{
pFirst->createEdge(pSecond, moveCost);
}
}

#define MAX_NODES (32768)
#define MAX_CONNECTIONS (5)
#include <time.h>

int * Graph::findPath_r(Node* pStart, Node* pEnd)
{
int *arr = new int[MAX_NODES+2];

for (int i=0; i<MAX_NODES; i++)
arr[i] = -1;

arr[0] = 0;
if(pStart == pEnd)
{
return arr;
}

std::vector<Node*> openList;
openList.push_back(pStart);
Node* pCurrNode = NULL;


while(!openList.empty())
{
//Get best node from open list (lowest F value).
//Since we sort the list at the end of the previous loop we know
//the front node is the best
pCurrNode = openList.front();

//Exit if we're are the goal
if(pCurrNode == pEnd)
break;

//Remove the node from the open list and place it in the closed
openList.erase(openList.begin());
pCurrNode->setClosed(true); //We use a flag instead of a list for speed
//Test all of the edge nodes from the current node
std::vector<Edge*>* pEdges = pCurrNode->getEdges();
Node* pEdgeNode = NULL;
for(std::vector<Edge*>::iterator i = pEdges->begin(); i != pEdges->end(); ++i)
{
pEdgeNode = (*i)->pNode;
//If it's closed we've already analysed it
if(!pEdgeNode->getClosed() && pCurrNode->DoesExist() == true)
{
if(!inList(pEdgeNode,&openList))
{
openList.push_back(pEdgeNode);
pEdgeNode->setGCost(pCurrNode->getGCost()+(*i)->moveCost);
pEdgeNode->calcFCost();
pEdgeNode->setParent(pCurrNode);
}
else
{
//If this is a better node (lower G cost)
if(pEdgeNode->getGCost() > pCurrNode->getGCost()+(*i)->moveCost)
{
pEdgeNode->setGCost(pCurrNode->getGCost()+(*i)->moveCost);
pEdgeNode->calcFCost();
pEdgeNode->setParent(pCurrNode);
}
}
}
}
//Place the lowest F cost item in the open list at the top, so we can
//access it easily next iteration
std::sort(openList.begin(), openList.end(), Graph::compareNodes);
}
//Make sure we actually found a path
if(pEnd->getParent() != NULL)
{
//Output the path
//Use a stack because it is LIFO
std::stack<Node*> path;
while(pCurrNode != NULL)
{
path.push(pCurrNode);
pCurrNode = pCurrNode->getParent();
}

int counter = 0;
arr[1] = 0;
while(!path.empty())
{
arr[counter+2] = path.top()->getName();
counter++;
arr[1] += path.top()->getGCost();
path.pop();
}
arr[0] = counter;
return arr;
}
return arr;
}

bool Graph::inList(Node* pNode, std::vector<Node*>* pList)
{
for(std::vector<Node*>::iterator i = pList->begin(); i != pList->end(); ++i)
{
if((*i) == pNode)
{
return true;
}
}

return false;
}

bool Graph::compareNodes(Node* pFirst, Node* pSecond)
{
return pFirst->getFCost() < pSecond->getFCost();
}

void Graph::reset(void)
{
for(std::vector<Node*>::iterator i = mNodes.begin(); i != mNodes.end(); ++i)
{
(*i)->reset();
}
}

寻找路径的函数是这个:图::findPath_r

我真正想做的是保留边缘(因为它们决定道路是双向的还是单向的)。

其他文件如下:图.h

#ifndef _GRAPH_H_
#define _GRAPH_H

#include "Node.h"

class Graph
{
public:
Graph(void);
~Graph(void);

//void addNode(int name, bool exists);
void addNode(int name, bool exists, Node** NodeID );
void connect_oneway(int ppFirst, int ppSecond, int moveCost);
void connect_oneway(Node* pFirst, Node* pSecond, int moveCost);
//int * findPath_r(int start, int end);
int * findPath_r(Node* pStart, Node* pEnd);
void reset(void);
private:
void findNodesx(int firstName, Node** ppFirstNode);
bool inList(Node* pNode, std::vector<Node*>* pList);
static bool compareNodes(Node* pFirst, Node* pSecond);
std::vector<Node*> mNodes;
};

#endif

节点.h

#ifndef _NODE_H_
#define _NODE_H_

#include <string>
#include <vector>

//Forward declare Node so Edge can see it
class Node;

struct Edge
{
Edge(Node* node, int cost) : pNode(node), moveCost(cost){}
Node* pNode;
int moveCost;
};

class Node
{
public:
Node(void);
Node(int name, bool exists);
~Node(void);

void createEdge(Node* pTarget, int moveCost);

void setGCost(int cost);
void setClosed(bool closed);
void setParent(Node* pParent);

int getGCost(void);
int getFCost(void);
bool getClosed(void);
Node* getParent(void);
int getName(void);
bool DoesExist(void);
bool DoesExist_yes(void);
std::vector<Edge*>* getEdges(void);

void calcFCost(void);
void reset(void);
private:
int mGCost;
int mTotal;
bool mClosed;
Node* mpParent;
int mName;
bool mHeur;
std::vector<Edge*> mEdges;
};

#endif

节点.cpp

#include "Node.h"

Node::Node(void)
{
}

Node::Node(/*const std::string&*/int name, bool exists) : mGCost(0), mTotal(0), mClosed(false), mpParent(NULL), mName(name), mHeur(exists)
{
}

Node::~Node(void)
{
while(!mEdges.empty())
{
delete mEdges.back();
mEdges.pop_back();
}
}

int Node::getName(void)
{
return mName;
}

void Node::createEdge(Node* pTarget, int moveCost)
{
mEdges.push_back(new Edge(pTarget, moveCost));
}

void Node::setClosed(bool closed)
{
mClosed = closed;
}

bool Node::getClosed(void)
{
return mClosed;
}

std::vector<Edge*>* Node::getEdges(void)
{
return &mEdges;
}

int Node::getGCost(void)
{
return mGCost;
}

void Node::setGCost(int cost)
{
mGCost = cost;
}

void Node::calcFCost(void)
{
mTotal = mGCost;
}

void Node::setParent(Node* pParent)
{
mpParent = pParent;
}

int Node::getFCost(void)
{
return mTotal;
}

bool Node::DoesExist(void)
{
return mHeur;
}

bool Node::DoesExist_yes(void)
{
mHeur = true;
return true;
}

Node* Node::getParent(void)
{
return mpParent;
}

void Node::reset(void)
{
mGCost = 0;
mTotal = 0;
mClosed = false;
mpParent = NULL;
}

最佳答案

您在 GoogleCode 上提到了一个库。很清楚您想做什么,我认为最好是自己编写实现。

首先,您应该知道 Dijsktra 是 A* 的特例。在 A* 中,您有一个名为 h 的启发式算法; A* = 当 h 为空函数时 Dijsktra 的可能实现。

然后,关于您的实现,让我们从 Node 开始。它将需要以下功能:

constructor, destructor
create/get edge
set/get parent
set/is closed (for speed)
set/get GCost
set/get FCost
set/is obstacle (name way more descriptive than 'DoesExist')
set/get position
reset

// optional method:
get name

希望您的这部分代码不会有太大变化。启发式代码将放置在探路者中。 Edge 类保持不变。

现在是重要的:Graph。您不需要删除任何公共(public)方法。

您将需要一种启发式方法。对于将要描述的实现,您将需要一个可接受的一致启发式:

  • 它不能高估到目标的距离(允许)
  • 必须是单调的(一致的)

一般情况下的签名是int getHCost(Node* node);。如果你总是返回 0,你就会有一个 Dijsktra 算法,这不是你想要的。在这里,我们将采用节点和目标之间的欧氏距离。计算速度比曼哈顿距离慢,但结果更好。您可以在之后更改它。

int getHCost(Node* node, Note* goal);

这意味着您必须将节点放置在 3d 空间中。请注意,启发式是启发式,即距离的估计

我不会写代码。我将编写一些适合您情况的伪代码。原始伪代码位于 Wikipedia A* page .此伪代码是您的 findPath_r 函数:

function A*(start,goal)
set all nodes to not closed // The set of nodes already evaluated.
openset = {start} // The set of tentative nodes to be evaluated, initially containing the start node

start.gcost = 0 // Cost from start along best known path.
// Estimated total cost from start to goal through y.
start.fcost = start.gcost + getHCost(start, goal)

while openset is not empty
current = the node in openset having the lowest f_cost (usually the first if you use a sorted list)
if current == goal
return construct_path(goal)

remove current from openset
current.closed = true
for each neighbor in (node connected by edge in current.edges) // Here is the condition for one-way edges
if neighbor.closed or neighbor.obstacle
continue

gcost = current.gcost + dist_between(current,neighbor) // via edge distance

if neighbor not in openset
add neighbor to openset
neighbor.parent = current
neighbor.gcost = gcost
neighbor.fcost = neighbor.gcost + getHCost(neighbor, goal)
else if gcost < neighbor.gcost
neighbor.parent = current
neighbor.gcost = gcost
neighbor.fcost = neighbor.gcost + getHCost(neighbor, goal)
update neighbor position in openset

return failure

function construct_path(current_node)
std::vector<Node*> path
while current_node != 0
path.push_front(current_node)
current_node = current_node.parent
return path

上面的实现使用了单向边。

您能够用 C++ 编写 Dijsktra 算法,因此用 C++ 编写此伪代码应该不是问题。

第二部分,表演。首先,测量 ;)。

我有一些可以提高性能的提示:

  • 使用内存池进行分配释放
  • 对开放列表使用侵入式列表(您也可以使用此技术使其自动排序)

我建议你阅读 A* for beginners ,这是一本有用的读物​​,即使您不使用 tilemap。

关于c++ - 如何将此代码从 Dijkstra 转换为 Astar?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/11307984/

39 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com