- Java 双重比较
- java - 比较器与 Apache BeanComparator
- Objective-C 完成 block 导致额外的方法调用?
- database - RESTful URI 是否应该公开数据库主键?
我比较了在 CPU 上运行的 OpenCL 代码的性能,它只是将数据从一个二维数组复制到另一个二维数组,与执行相同操作的纯 C++ 代码相比。我在 OpenCL 代码中使用单个工作组来进行公平比较。我使用了英特尔的 OpenCL 驱动程序和英特尔编译器。 OpenCL 代码比 CPU 代码慢大约 5 倍。编译器为复制循环提供以下消息:
loop was transformed to memset or memcpy.
关于如何使 OpenCL 代码与 C++ 代码同步的任何建议?
谢谢
OpenCL 主机代码:
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <fstream>
#include <cmath>
#include <ctime>
#include <CL/cl.hpp>
int main(int argc, char **argv)
{
// Create the two input vectors
const int N = 8192;
double *in = new double[N*N];
double *out = new double[N*N];
for(int i = 0; i < N; i++)
for (int j=0; j < N; j++) {
in[i*N + j] = i + j;
out[i*N + j] = 0.;
}
double time;
std::clock_t start;
int niter = 100;
cl_int cl_err;
std::vector<cl::Platform> platforms;
cl_err = cl::Platform::get(&platforms);
std::vector<cl::Device> devices;
cl_err = platforms.at(1).getDevices(CL_DEVICE_TYPE_CPU,
&devices);
cl_context_properties context_properties[3] = {CL_CONTEXT_PLATFORM,
(cl_context_properties)(platforms.at(1)()),
0};
cl::Context context = cl::Context(devices,
context_properties,
NULL, NULL, &cl_err);
cl::Buffer buffer_in = cl::Buffer(context,
CL_MEM_USE_HOST_PTR | CL_MEM_READ_ONLY,
N*N*sizeof(double),
in, &cl_err);
cl::Buffer buffer_out = cl::Buffer(context,
CL_MEM_USE_HOST_PTR | CL_MEM_WRITE_ONLY,
N*N*sizeof(double),
out, &cl_err);
cl::CommandQueue queue = cl::CommandQueue(context, devices.at(0), 0, &cl_err);
std::ifstream sourceFile("vector_copy.cl");
std::string sourceCode((std::istreambuf_iterator<char>(sourceFile)),
std::istreambuf_iterator<char>());
cl::Program::Sources source(1, std::make_pair(sourceCode.c_str(),
sourceCode.length()+1));
cl::Program program(context, source, &cl_err);
cl_err = program.build(devices, NULL, NULL, NULL);
cl::Kernel kernel(program, "vector_copy", &cl_err);
cl_err = kernel.setArg(0, buffer_in);
cl_err = kernel.setArg(1, buffer_out);
cl_err = kernel.setArg(2, N);
cl::NDRange global(N);
cl::NDRange local(N);
start = std::clock();
for (int n=0; n < niter; n++) {
cl_err = queue.enqueueNDRangeKernel(kernel,
cl::NullRange,
global,
local,
NULL, NULL);
cl_err = queue.finish();
}
time = (std::clock() - start)/(double)CLOCKS_PER_SEC;
std::cout << "Time/iteration OpenCL (s) = " << time/(double)niter << std::endl;
return(0);
}
OpenCL 内核代码:
__kernel void vector_copy(__global const double* restrict in,
__global double* restrict out,
const int N)
{
int i = get_global_id(0);
int j;
for (j=0; j<N; j++) {
out[j + N*i] = in[j + N*i];
}
}
C++代码:
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <fstream>
#include <cmath>
#include <ctime>
const int N = 8192;
int main(int argc, char **argv)
{
double *in = new double[N*N];
double *out = new double[N*N];
// Create the two input vectors
for(int i = 0; i < N; i++)
for (int j=0; j < N; j++) {
in[j + N*i] = i + j;
out[j + N*i] = 0.;
}
std::clock_t start;
int niter = 100;
start = std::clock();
for (int n=0; n < niter; n++) {
for (int i=0; i<N; i++)
for (int j=0; j<N; j++) {
out[j + N*i] = in[j + N*i];
}
}
double time = (std::clock() - start)/(double)CLOCKS_PER_SEC;
std::cout << "Time/iteration C = " << time/(double)niter << std::endl;
return(0);
}
最佳答案
英特尔 OpenCL 编译器能够跨工作组进行矢量化。基本上一个函数运行,例如,在不同的 SSE 寄存器中同时运行 8 个线程。
您的特定内核不会那样做。但这并不重要。我使用 Visual Studio 2010 和最新的面向应用程序的英特尔 OpenCL 测试了您的程序。我被迫将 N 从 8192 减少到 4096,因为我拥有的集成 GPU 将最大 OpenCL 缓冲区大小减少到 128MB,即使只使用 CPU。
我的结果:您的 OpenCL 内核为我提供了大约 6956MB/s 的带宽。一个简单更改的内核(这被称为 N*N 作为全局大小,NULL 作为本地大小,因为如果我们根本不关心本地内存,那么对于 CPU,我们应该将其保留为未定义)。
__kernel void vector_copy2(__global const double* restrict in,
__global double* restrict out)
{
int i = get_global_id(0);
out[i] = in[i];
}
给出了大致相同的结果 (7006MB/s)。这个内核实际上是跨线程矢量化的,可以使用英特尔 OpenCL 内核编译器进行验证。它为某个倍数(如 4)生成一个内核,为单个线程生成一个内核。然后它只运行矢量化内核,直到它必须为最后几个工作项运行单线程内核。
C++ 代码给出了 6494MB/s。所以还是很符合的。我认为 ICC 甚至不可能将其速度提高 5 倍。
我注意到您的代码中有 platforms.at(1),您计算机中的平台 0 是什么?
请记住,如果您根本不关心本地内存(您不在内核中调用 get_local_id),您应该将 enqueueNDRange 的本地大小视为一个简单的魔术参数。将其保留为 NULL 或尝试找到产生最快结果的值。
关于c++ - 在 CPU 上使用 OpenCL 将一个数组复制到另一个数组比 C++ 代码慢得多,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/20089963/
自己试试看: import pandas as pd s=pd.Series(xrange(5000000)) %timeit s.loc[[0]] # You need pandas 0.15.1
我最近开始使用 Delphi 中的 DataSnap 来生成 RESTful Web 服务。在遵循 Marco Cantu 本人和互联网上其他几个人的指导后,我成功地使整个“链条”正常工作。 但是有一
我一直在为操作系统类(class)编写以下代码,但结果有些奇怪。该代码创建x线程并同时运行它们,以便将两个平方矩阵相乘。每个线程将输入矩阵的Number_of_rows/Number_of_threa
我正在尝试确定何时使用 parallel包以加快运行某些分析所需的时间。我需要做的一件事是创建矩阵,比较具有不同行数的两个数据框中的变量。我在 StackOverflow 上问了一个关于有效方法的问题
我最近对我的代码进行了一些清理,并在此过程中更改了此内容(不完全是真实的代码): read = act readSTRef test1 term i var = do t v^!terms.
我正在计时查询和同一个查询的执行时间,分页。 foreach (var x in productSource.OrderBy(p => p.AdminDisplayName) .Wher
我正在开发一个项目 (WPF),我有一个 Datagrid 从数据库加载超过 5000 条记录,所以我使用 BackgroundWorker 来通知用户数据正在加载,但它太慢了,我需要等待将近 2分钟
我在查询中添加 ORDER BY 时遇到问题。没有 ORDER BY 查询大约需要 26ms,一旦我添加 ORDER BY,它大约需要 20s。 我尝试了几种不同的方法,但似乎可以减少时间。 尝试 F
我是 Android 开发新手,遇到了性能问题。当我的 GridView 有太多项目时,它会变得有点慢。有什么方法可以让它运行得更快一些吗? 这是我使用的代码: 适配器: public class C
这里的要点是: 1.设置query_cache_type = 0;重置查询缓存; 2.在 heidisql(或任何其他客户端 UI)中运行任何查询 --> 执行,例如 45 毫秒 3.使用以下代码运行
想象下表: CREATE TABLE drops( id BIGSERIAL PRIMARY KEY, loc VARCHAR(5) NOT NULL, tag INT NOT
我的表 test_table 中的示例数据: date symbol value created_time 2010-01-09 symbol1
首先,如果已经有人问过这个问题,我深表歉意,至少我找不到任何东西。 无论如何,我将每 5 分钟运行一次 cron 任务。该脚本加载 79 个外部页面,而每个页面包含大约 200 个我需要在数据库中检查
我有下面的 SQL 代码,它来自 MySQL 数据库。现在它给了我期望的结果,但是查询很慢,我想我应该在进一步之前加快这个查询的速度。 表agentstatusinformation有: PKEY(主
我需要获取一个对象在 Core Data 中数千个其他对象之间的排名。现在,这是我的代码: - (void)rankMethod { //Fetch all objects NSFet
我正在编写一个应用程序,我需要在其中读取用户的地址簿并显示他所有联系人的列表。我正在测试的 iPhone 有大约 100 个联系人,加载联系人确实需要很多时间。 ABAddressBookRef ad
我正在使用 javascript 将 160 行添加到包含 10 列的表格中。如果我这样做: var cellText = document.createTextNode(value); cell.a
我是 Swift 的新手,我已经设置了一个 tableView,它从 JSON 提要中提取数据并将其加载到表中。 表格加载正常,但是当表格中有超过 10 个单元格时,它会变得缓慢且有些滞后,特别是它到
我在 InitializeCulture 和 Page_PreInit 事件之间的 asp.net 页面中遇到性能问题。当我重写 DeterminePostBackMode() 时,我发现问题出在 b
我在 Hetzner 上有一个带有 256GB RAM 6 个 CPU(12 个线程) 的专用服务器,它位于德国。我有 CENTOS 7.5。 EA4。 我的问题是 SSL。每天大约 2 小时,我们在
我是一名优秀的程序员,十分优秀!