- Java 双重比较
- java - 比较器与 Apache BeanComparator
- Objective-C 完成 block 导致额外的方法调用?
- database - RESTful URI 是否应该公开数据库主键?
Spark Java 应用程序在 hadoop 可写对象上抛出 NotSerializableException。
public final class myAPP {
public static void main(String[] args) throws Exception {
if (args.length < 1) {
System.err.println("Usage: myAPP <file>");
System.exit(1);
}
SparkConf sparkConf = new SparkConf().setAppName("myAPP").setMaster("local");
JavaSparkContext ctx = new JavaSparkContext(sparkConf);
Configuration conf = new Configuration();
JavaPairRDD<LongWritable,Text> lines = ctx.newAPIHadoopFile(args[0], TextInputFormat.class, LongWritable.class, Text.class, conf);
System.out.println( lines.collect().toString());
ctx.stop();
}
.
java.io.NotSerializableException: org.apache.hadoop.io.LongWritable
Serialization stack:
- object not serializable (class: org.apache.hadoop.io.LongWritable, value: 15227295)
- field (class: scala.Tuple2, name: _1, type: class java.lang.Object)
- object (class scala.Tuple2, (15227295,))
- element of array (index: 0)
- array (class [Lscala.Tuple2;, size 1153163)
at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:38)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:80)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source)
at java.lang.Thread.run(Unknown Source)
15/04/26 16:05:05 ERROR TaskSetManager: Task 0.0 in stage 0.0 (TID 0) had a not serializable result: org.apache.hadoop.io.LongWritable
Serialization stack:
- object not serializable (class: org.apache.hadoop.io.LongWritable, value: 15227295)
- field (class: scala.Tuple2, name: _1, type: class java.lang.Object)
- object (class scala.Tuple2, (15227295,))
- element of array (index: 0)
- array (class [Lscala.Tuple2;, size 1153163); not retrying
15/04/26 16:05:05 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
15/04/26 16:05:05 INFO TaskSchedulerImpl: Cancelling stage 0
15/04/26 16:05:05 INFO DAGScheduler: Job 0 failed: collect at Parser2.java:60, took 0.460181 s
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0.0 in stage 0.0 (TID 0) had a not serializable result: org.apache.hadoop.io.LongWritable
在 Spark Scala 程序中,我按如下方式注册了 hadoop 可写对象,它工作正常。
sparkConf.registerKryoClasses(Array(classOf[org.apache.hadoop.io.LongWritable], classOf[org.apache.hadoop.io.Text]))
显然这种方法不适用于 Apache Spark API
sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer");
sparkConf.set("spark.kryo.registrator", LongWritable.class.getName());
.
Exception in thread "main" org.apache.spark.SparkException: Failed to register classes with Kryo
at org.apache.spark.serializer.KryoSerializer.newKryo(KryoSerializer.scala:101)
at org.apache.spark.serializer.KryoSerializerInstance.<init>(KryoSerializer.scala:153)
at org.apache.spark.serializer.KryoSerializer.newInstance(KryoSerializer.scala:115)
at org.apache.spark.broadcast.TorrentBroadcast$.blockifyObject(TorrentBroadcast.scala:200)
at org.apache.spark.broadcast.TorrentBroadcast.writeBlocks(TorrentBroadcast.scala:101)
at org.apache.spark.broadcast.TorrentBroadcast.<init>(TorrentBroadcast.scala:84)
at org.apache.spark.broadcast.TorrentBroadcastFactory.newBroadcast(TorrentBroadcastFactory.scala:34)
at org.apache.spark.broadcast.TorrentBroadcastFactory.newBroadcast(TorrentBroadcastFactory.scala:29)
at org.apache.spark.broadcast.BroadcastManager.newBroadcast(BroadcastManager.scala:62)
at org.apache.spark.SparkContext.broadcast(SparkContext.scala:1051)
at org.apache.spark.rdd.NewHadoopRDD.<init>(NewHadoopRDD.scala:77)
at org.apache.spark.SparkContext.newAPIHadoopFile(SparkContext.scala:848)
at org.apache.spark.api.java.JavaSparkContext.newAPIHadoopFile(JavaSparkContext.scala:488)
at com.nsn.PMParser.Parser2.main(Parser2.java:56)
Caused by: java.lang.ClassCastException: org.apache.hadoop.io.LongWritable cannot be cast to org.apache.spark.serializer.KryoRegistrator
at org.apache.spark.serializer.KryoSerializer$$anonfun$newKryo$3.apply(KryoSerializer.scala:97)
at org.apache.spark.serializer.KryoSerializer$$anonfun$newKryo$3.apply(KryoSerializer.scala:97)
at scala.Option.map(Option.scala:145)
at org.apache.spark.serializer.KryoSerializer.newKryo(KryoSerializer.scala:97)
... 13 more
hadoop writables NotSerializableException 与 Apache Spark Java API?
最佳答案
从 Spark v1.4.0 开始,您可以使用此 Java API 注册要使用 Kryo 序列化的类: https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkConf.html#registerKryoClasses(java.lang.Class[]),通过传入一个 Class 对象数组,每个对象都可以使用 http://docs.oracle.com/javase/7/docs/api/java/lang/Class.html#forName(java.lang.String)
例如:
new SparkConf().registerKryoClasses(new Class<?>[]{
Class.forName("org.apache.hadoop.io.LongWritable"),
Class.forName("org.apache.hadoop.io.Text")
});
希望这对您有所帮助。
关于java - hadoop writables NotSerializableException 与 Apache Spark API,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29876681/
我们有数据(此时未分配)要转换/聚合/透视到 wazoo。 我在 www 上看了看,我问的所有答案都指向 hadoop 可扩展、运行便宜(没有 SQL 服务器机器和许可证)、快速(如果你有足够的数据)
这很明显,我们都同意我们可以将 HDFS + YARN + MapReduce 称为 Hadoop。但是,Hadoop 生态系统中的其他不同组合和其他产品会怎样? 例如,HDFS + YARN + S
如果 es-hadoop 只是连接到 HDFS 的 Hadoop 连接器,它如何支持 Hadoop 分析? 最佳答案 我假设您指的是 this project .在这种情况下,ES Hadoop 项目
看完this和 this论文,我决定我想在 MapReduce 上为大型数据集实现分布式体积渲染设置作为我的本科论文工作。 Hadoop 是一个合理的选择吗? Java 不会扼杀一些性能提升或使与 C
我一直在尝试查找有关如何通过命令行提交 hadoop 作业的信息。 我知道命令 - hadoop jar jar-file 主类输入输出 还有另一个命令,我正在尝试查找有关它的信息,但未能找到 - h
Hadoop 服务器在 Kubernetes 中。而Hadoop客户端位于外网。所以我尝试使用 kubernetes-service 来使用 Hadoop 服务器。但是 hadoop fs -put
有没有人遇到奇怪的环境问题,在调用 hadoop 命令时被迫使用 SU 而不是 SUDO? sudo su -c 'hadoop fs -ls /' hdfs Found 4 itemsdrwxr-x
在更改 mapred-site.xml 中的属性后,我给出了一个 tar.bz2 文件、.gz 和 tar.gz 文件作为输入。以上似乎都没有奏效。我假设这里发生的是 hadoop 作为输入读取的记录
如何在 Hadoop Pipes 中获取正在 hadoop 映射器 中执行的输入文件 名称? 我可以很容易地在基于 java 的 map reducer 中获取文件名,比如 FileSplit fil
我想使用 MapReduce 方法分析连续的数据流(通过 HTTP 访问),因此我一直在研究 Apache Hadoop。不幸的是,Hadoop 似乎期望以固定大小的输入文件开始作业,而不是能够在新数
名称节点可以执行任务吗?默认情况下,任务在集群的数据节点上执行。 最佳答案 假设您正在询问MapReduce ... 使用YARN,MapReduce任务在应用程序主数据库中执行,而不是在nameno
我有一个关系A包含 (zip-code). 我还有另一个关系B包含 (name:gender:zip-code) (x:m:1234) (y:f:1234) (z:m:1245) (s:f:1235)
我是hadoop地区的新手。您能帮我负责(k2,list[v2,v2,v2...])形式的输出(意味着将键及其所有关联值组合在一起)的责任是吗? 谢谢。 最佳答案 这是Hadoop的MapReduce
因此,我一直在尝试编写一个hadoop程序,该程序将输入作为一个包含许多文件的文件,并且我希望hadoop程序的输出仅是输入文件的一行。但是我还没有做到这一点。我也不想去 reducer 课。如果有人
我使用的输入文本文件的内容是 1 "Come 1 "Defects," 1 "I 1 "Information 1 "J" 2 "Plain 5 "Project 1
谁能告诉我以下grep命令的作用: $ bin/hadoop jar hadoop-*-examples.jar grep input output 'dfs[a-z.]+' 最佳答案 http:/
我不了解mapreducer的基本功能,mapreducer是否有助于将文件放入HDFS 或mapreducer仅有助于分析HDFS中现有文件中的内容 我对hadoop非常陌生,任何人都可以指导我理解
CopyFromLocal将从本地文件系统上载数据。 不要放会从任何文件上传数据,例如。本地FS,亚马逊S3 或仅来自本地fs ??? 最佳答案 请找到两个命令的用法。 put ======= Usa
我开始研究hadoop mapreduce。 我是Java和hadoop的初学者,并且了解hadoop mapreduce的编码,但是有兴趣了解它在云中的内部工作方式。 您能否分享一些很好的链接来说明
我一直在寻找Hadoop mapreduce类的类路径。我正在使用Hortonworks 2.2.4版沙箱。我需要这样的类路径来运行我的javac编译器: javac -cp (CLASS_PATH)
我是一名优秀的程序员,十分优秀!