gpt4 book ai didi

java - 执行和测试 stanford core nlp 示例

转载 作者:搜寻专家 更新时间:2023-10-30 21:14:03 24 4
gpt4 key购买 nike

我下载了 stanford core nlp 包并尝试在我的机器上测试它。

使用命令:java -cp "*"-mx1g edu.stanford.nlp.sentiment.SentimentPipeline -file input.txt

我得到了 positivenegative 形式的情绪结果。 input.txt 包含要测试的句子。

关于更多命令:java -cp stanford-corenlp-3.3.0.jar;stanford-corenlp-3.3.0-models.jar;xom.jar;joda-time.jar -Xmx600m edu.stanford。 nlp.pipeline.StanfordCoreNLP -annotators tokenize,ssplit,pos,lemma,parse -file input.txt 执行时给出以下行:

H:\Drive E\Stanford\stanfor-corenlp-full-2013~>java -cp stanford-corenlp-3.3.0.j
ar;stanford-corenlp-3.3.0-models.jar;xom.jar;joda-time.jar -Xmx600m edu.stanford
.nlp.pipeline.StanfordCoreNLP -annotators tokenize,ssplit,pos,lemma,parse -file
input.txt
Adding annotator tokenize
Adding annotator ssplit
Adding annotator pos
Reading POS tagger model from edu/stanford/nlp/models/pos-tagger/english-left3wo
rds/english-left3words-distsim.tagger ... done [36.6 sec].
Adding annotator lemma
Adding annotator parse
Loading parser from serialized file edu/stanford/nlp/models/lexparser/englishPCF
G.ser.gz ... done [13.7 sec].

Ready to process: 1 files, skipped 0, total 1
Processing file H:\Drive E\Stanford\stanfor-corenlp-full-2013~\input.txt ... wri
ting to H:\Drive E\Stanford\stanfor-corenlp-full-2013~\input.txt.xml {
Annotating file H:\Drive E\Stanford\stanfor-corenlp-full-2013~\input.txt [13.6
81 seconds]
} [20.280 seconds]
Processed 1 documents
Skipped 0 documents, error annotating 0 documents
Annotation pipeline timing information:
PTBTokenizerAnnotator: 0.4 sec.
WordsToSentencesAnnotator: 0.0 sec.
POSTaggerAnnotator: 1.8 sec.
MorphaAnnotator: 2.2 sec.
ParserAnnotator: 9.1 sec.
TOTAL: 13.6 sec. for 10 tokens at 0.7 tokens/sec.
Pipeline setup: 58.2 sec.
Total time for StanfordCoreNLP pipeline: 79.6 sec.

H:\Drive E\Stanford\stanfor-corenlp-full-2013~>

可以理解。没有信息性结果。

我有一个例子:stanford core nlp java output

import java.io.*;
import java.util.*;

import edu.stanford.nlp.io.*;
import edu.stanford.nlp.ling.*;
import edu.stanford.nlp.pipeline.*;
import edu.stanford.nlp.trees.*;
import edu.stanford.nlp.util.*;

public class StanfordCoreNlpDemo {

public static void main(String[] args) throws IOException {
PrintWriter out;
if (args.length > 1) {
out = new PrintWriter(args[1]);
} else {
out = new PrintWriter(System.out);
}
PrintWriter xmlOut = null;
if (args.length > 2) {
xmlOut = new PrintWriter(args[2]);
}

StanfordCoreNLP pipeline = new StanfordCoreNLP();
Annotation annotation;
if (args.length > 0) {
annotation = new Annotation(IOUtils.slurpFileNoExceptions(args[0]));
} else {
annotation = new Annotation("Kosgi Santosh sent an email to Stanford University. He didn't get a reply.");
}

pipeline.annotate(annotation);
pipeline.prettyPrint(annotation, out);
if (xmlOut != null) {
pipeline.xmlPrint(annotation, xmlOut);
}
// An Annotation is a Map and you can get and use the various analyses individually.
// For instance, this gets the parse tree of the first sentence in the text.
List<CoreMap> sentences = annotation.get(CoreAnnotations.SentencesAnnotation.class);
if (sentences != null && sentences.size() > 0) {
CoreMap sentence = sentences.get(0);
Tree tree = sentence.get(TreeCoreAnnotations.TreeAnnotation.class);
out.println();
out.println("The first sentence parsed is:");
tree.pennPrint(out);
}
}

}

尝试在包含必要库的 netbeans 中执行它。但它总是卡在两者之间或给出异常 Exception in thread “main” java.lang.OutOfMemoryError: Java heap space

你在property/run/VM box中设置要分配的内存

知道如何使用命令行在 java 示例之上运行吗?

我想得到例子的情感分数

更新

输出:java -cp "*"-mx1g edu.stanford.nlp.sentiment.SentimentPipeline -file input.txt

enter image description here

输出:java -cp stanford-corenlp-3.3.0.j
ar;stanford-corenlp-3.3.0-models.jar;xom.jar;joda-time.jar -Xmx600m edu.stanford
.nlp.pipeline.StanfordCoreNLP -注释器标记化、ssplit、pos、引理、解析 - 文件
输入.txt

Out of of above command

最佳答案

您可以在代码中执行以下操作:

String text = "I am feeling very sad and frustrated.";
Properties props = new Properties();
props.setProperty("annotators", "tokenize, ssplit, pos, lemma, parse, sentiment");
StanfordCoreNLP pipeline = new StanfordCoreNLP(props);
<...>
Annotation annotation = pipeline.process(text);
List<CoreMap> sentences = annotation.get(CoreAnnotations.SentencesAnnotation.class);
for (CoreMap sentence : sentences) {
String sentiment = sentence.get(SentimentCoreAnnotations.SentimentClass.class);
System.out.println(sentiment + "\t" + sentence);
}

它将打印句子的情感和句子本身,例如“我感到非常悲伤和沮丧。”:

Negative    I am feeling very sad and frustrated.

关于java - 执行和测试 stanford core nlp 示例,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/20359346/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com