- Java 双重比较
- java - 比较器与 Apache BeanComparator
- Objective-C 完成 block 导致额外的方法调用?
- database - RESTful URI 是否应该公开数据库主键?
假设我们有 3 个方法:方法 2 从方法 1 调用,方法 3 从方法 2 调用。方法 2 和 3 的大小均为 30 个字节码。此外,为了确定性,假设方法 2 总是从方法 1 调用一次,而方法 3 总是从方法 2 调用一次。
如果先内联方法 2,则方法 3 将直接从方法 1 的主体中调用,然后依次内联。如果方法3先内联到方法2,后者的大小会变成60字节码左右,无法内联,因为默认的MaxInlineSize
阈值是35字节码。
HotSpot JIT 内联方法的顺序是什么:自上而下还是自下而上?
最佳答案
MaxInlineSize
仅影响至少执行一次但少于 MinInliningThreshold
次的方法的编译。对于执行超过 MinInliningThreshold
的方法,有一个不同的设置 -XX:FreqInlineSize=...
具有更大(取决于平台)的默认值。无论 MaxInlineSize
是什么,热点仍然是内联的。您可以通过使用 -XX:+UnlockDiagnosticVMOptions
-XX:+PrintInlining
-XX:MaxInlineSize=0
运行应用程序来测试它。它仍然会报告热点的内联(这些带有注释“(热点)”)。只有以前报告为内联注释“执行 < MinInliningThreshold 次”的方法可能会得到注释“太大”。如果您设置 FreqInlineSize
,您可能会收到“hot method too big”之类的评论。我从未在默认设置下看到它们。
关于java - HotSpot JIT 内联策略 : top-down or down-top,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18737774/
在动态语言中,动态类型代码 JIT 是如何编译成机器码的?更具体地说:编译器是否会在某个时候推断类型?还是在这些情况下严格解释? 例如,如果我有类似下面的伪代码 def func(arg) i
X86 和 AMD64 是许多计算环境(桌面、服务器和 super 计算机)最重要的架构。显然,JIT 编译器应该同时支持它们才能获得认可。 直到最近,SPARC 架构才是编译器合乎逻辑的下一步,特别
既然有如此多的 JIT 实现,每个 JIT 都会发出 native 代码。那么为什么没有人制作像 JIT2EXE 这样的工具来将 native 代码保存为 native 可执行文件呢? 最佳答案 这个
JIT 编译器将字节码编译成机器码的概念我还是不太清楚。我想知道为什么它比非 JIT 解释器产生更快的代码。有人可以给我一个很好的例子来说明这个过程是如何完成的吗? 最佳答案 假设您有一个需要执行一百
Torchscript 提供了 torch.jit.trace 和 torch.jit.script 将 pytorch 代码从 Eager 模式转换为脚本模型。从文档中,我可以理解 torch.ji
好的,我已经阅读了一些关于 JIT 和非 JIT 启用解释器之间差异的讨论,以及为什么 JIT 通常会提高性能。 但是,我的问题是: 最终,不支持 JIT 的解释器是否必须像 JIT 编译器那样将字节
有没有办法在消除 JIT 开销的同时实现 JIT 性能?最好通过将类文件编译为 native 镜像。 我研究过GCJ,但即使对于简单的程序,GCJ输出的性能也比Java JIT差很多。 最佳答案 您可
我试图更好地理解 JIT 编译器在 volatile 变量值缓存方面如何为 java 工作。考虑这个问题中提出的例子: Infinite loop problem with while loop an
我的代码是这样的: @jit(nopython=True) def sum_fn(arg1, arg2, ...argn): ..... for i in xrange(len(arg
以下代码无效: def get_unique(arr): return jnp.unique(arr) get_unique = jit(get_unique) get_unique(jnp.
我需要能够调用一个 GPU 函数,该函数本身间接调用另一个 GPU 函数: from numba import cuda, jit import numpy as np # GPU function
我有一个关于使用 Continuum 的 Accelerate 和 numba 包中的 Python CUDA 库的问题。正在使用装饰器@jit与 target = gpu同 @cuda.jit ?
有人可以指出我的方向,这可能会让我明白为什么 JIT 会取消优化我的循环? (OSR)。看起来它被 C1 编译一次,然后多次取消优化(我可以看到数十或数百个以 开头的日志) 这是包含该重要循环的类:
我引用了Oracle的以下文档: http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/underst_jit
我需要在 C++ 中运行预训练的 pytorch 神经网络模型(在 python 中训练)来进行预测。 为此,我按照此处给出的有关如何在 C++ 中加载 pytorch 模型的说明进行操作:https
我正在使用 numbas @jit 装饰器在 python 中添加两个 numpy 数组。如果我使用 @jit 与 python 相比,性能是如此之高。 然而,即使我传入 @numba.jit(nop
我是Python新手。 我编写了一些代码尝试将图片混合为新图片。 我完成了,但是浪费了太多时间。 所以我尝试使用 Numba 让代码在我的 GPU 上运行。但遇到一些警告和错误 os Ubuntu 1
我正在将我的网站从安装在共享网络托管帐户(在 DreamHost)上的 PHP v.5 转换为在 PHP 7.3.11 上运行。转换后,我开始注意到偶尔会收到以下警告: Warning: preg_m
在 Stack Overflow 上向所有编译器设计者致以问候。 我目前正在从事一个项目,该项目的重点是开发一种用于高性能计算的新脚本语言。源代码首先被编译成字节码表示。字节码然后由运行时加载,它对其
我相信 Apple 已禁止在 ARM64 架构上同时写入和执行内存,请参阅: 参见 mmap() RWX page on MacOS (ARM64 architecture)? 这使得像 jonesf
我是一名优秀的程序员,十分优秀!