gpt4 book ai didi

python - Python 中 OLS 的 Newey-West 标准错误?

转载 作者:太空狗 更新时间:2023-10-30 00:29:50 34 4
gpt4 key购买 nike

我想要一个系数和与之关联的 Newey-West 标准误差。

我正在寻找可以执行以下 R 代码所执行的操作的 Python 库(理想情况下,但任何可行的解决方案都可以):

library(sandwich)
library(lmtest)

a <- matrix(c(1,3,5,7,4,5,6,4,7,8,9))
b <- matrix(c(3,5,6,2,4,6,7,8,7,8,9))

temp.lm = lm(a ~ b)

temp.summ <- summary(temp.lm)
temp.summ$coefficients <- unclass(coeftest(temp.lm, vcov. = NeweyWest))

print (temp.summ$coefficients)

结果:

             Estimate Std. Error   t value  Pr(>|t|)
(Intercept) 2.0576208 2.5230532 0.8155281 0.4358205
b 0.5594796 0.4071834 1.3740235 0.2026817

我得到系数并与它们相关联的标准误差。

我看到 statsmodels.stats.sandwich_covariance.cov_hac模块,但我不知道如何让它与 OLS 一起工作。

最佳答案

编辑 (10/31/2015) 以反射(reflect) 2015 年秋季 statsmodels 的首选编码风格

statsmodels 版本 0.6.1 中,您可以执行以下操作:

import pandas as pd
import numpy as np
import statsmodels.formula.api as smf

df = pd.DataFrame({'a':[1,3,5,7,4,5,6,4,7,8,9],
'b':[3,5,6,2,4,6,7,8,7,8,9]})

reg = smf.ols('a ~ 1 + b',data=df).fit(cov_type='HAC',cov_kwds={'maxlags':1})
print reg.summary()

OLS Regression Results
==============================================================================
Dep. Variable: a R-squared: 0.281
Model: OLS Adj. R-squared: 0.201
Method: Least Squares F-statistic: 1.949
Date: Sat, 31 Oct 2015 Prob (F-statistic): 0.196
Time: 03:15:46 Log-Likelihood: -22.603
No. Observations: 11 AIC: 49.21
Df Residuals: 9 BIC: 50.00
Df Model: 1
Covariance Type: HAC
==============================================================================
coef std err z P>|z| [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept 2.0576 2.661 0.773 0.439 -3.157 7.272
b 0.5595 0.401 1.396 0.163 -0.226 1.345
==============================================================================
Omnibus: 0.361 Durbin-Watson: 1.468
Prob(Omnibus): 0.835 Jarque-Bera (JB): 0.331
Skew: 0.321 Prob(JB): 0.847
Kurtosis: 2.442 Cond. No. 19.1
==============================================================================

Warnings:
[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 1 lags and without small sample correction

或者你可以在拟合模型后使用get_robustcov_results方法:

reg = smf.ols('a ~ 1 + b',data=df).fit()
new = reg.get_robustcov_results(cov_type='HAC',maxlags=1)
print new.summary()


OLS Regression Results
==============================================================================
Dep. Variable: a R-squared: 0.281
Model: OLS Adj. R-squared: 0.201
Method: Least Squares F-statistic: 1.949
Date: Sat, 31 Oct 2015 Prob (F-statistic): 0.196
Time: 03:15:46 Log-Likelihood: -22.603
No. Observations: 11 AIC: 49.21
Df Residuals: 9 BIC: 50.00
Df Model: 1
Covariance Type: HAC
==============================================================================
coef std err z P>|z| [95.0% Conf. Int.]
------------------------------------------------------------------------------
Intercept 2.0576 2.661 0.773 0.439 -3.157 7.272
b 0.5595 0.401 1.396 0.163 -0.226 1.345
==============================================================================
Omnibus: 0.361 Durbin-Watson: 1.468
Prob(Omnibus): 0.835 Jarque-Bera (JB): 0.331
Skew: 0.321 Prob(JB): 0.847
Kurtosis: 2.442 Cond. No. 19.1
==============================================================================

Warnings:
[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 1 lags and without small sample correction

statsmodels 的默认值与 R 中等效方法的默认值略有不同。 R 方法可以等效于 statsmodels 默认值(我在上面所做的),方法是将 vcov, 调用更改为以下内容:

temp.summ$coefficients <- unclass(coeftest(temp.lm, 
vcov. = NeweyWest(temp.lm,lag=1,prewhite=FALSE)))
print (temp.summ$coefficients)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.0576208 2.6605060 0.7733945 0.4591196
b 0.5594796 0.4007965 1.3959193 0.1962142

您仍然可以在 pandas (0.17) 中执行 Newey-West,尽管我相信计划是在 pandas 中弃用 OLS:

print pd.stats.ols.OLS(df.a,df.b,nw_lags=1)

-------------------------Summary of Regression Analysis-------------------------

Formula: Y ~ <x> + <intercept>

Number of Observations: 11
Number of Degrees of Freedom: 2

R-squared: 0.2807
Adj R-squared: 0.2007

Rmse: 2.0880

F-stat (1, 9): 1.5943, p-value: 0.2384

Degrees of Freedom: model 1, resid 9

-----------------------Summary of Estimated Coefficients------------------------
Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5%
--------------------------------------------------------------------------------
x 0.5595 0.4431 1.26 0.2384 -0.3090 1.4280
intercept 2.0576 2.9413 0.70 0.5019 -3.7073 7.8226
*** The calculations are Newey-West adjusted with lags 1

---------------------------------End of Summary---------------------------------

关于python - Python 中 OLS 的 Newey-West 标准错误?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/23420454/

34 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com