- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我们的 parquet 文件存储在 aws S3 存储桶中,并由 SNAPPY 压缩。我能够使用 python fastparquet 模块读取未压缩版本的 Parquet 文件,但不能读取压缩版本。
这是我用于未压缩的代码
s3 = s3fs.S3FileSystem(key='XESF', secret='dsfkljsf')
myopen = s3.open
pf = ParquetFile('sample/py_test_snappy/part-r-12423423942834.parquet', open_with=myopen)
df=pf.to_pandas()
这不会返回任何错误,但是当我尝试读取文件的活泼压缩版本时:
pf = ParquetFile('sample/py_test_snappy/part-r-12423423942834.snappy.parquet', open_with=myopen)
我在使用 to_pandas() 时出错
df=pf.to_pandas()
错误信息
KeyErrorTraceback (most recent call last) in () ----> 1 df=pf.to_pandas()
/opt/conda/lib/python3.5/site-packages/fastparquet/api.py in to_pandas(self, columns, categories, filters, index) 293 for (name, v) in views.items()} 294 self.read_row_group(rg, columns, categories, infile=f, --> 295 index=index, assign=parts) 296 start += rg.num_rows 297 else:
/opt/conda/lib/python3.5/site-packages/fastparquet/api.py in read_row_group(self, rg, columns, categories, infile, index, assign) 151 core.read_row_group( 152 infile, rg, columns, categories, self.helper, self.cats, --> 153 self.selfmade, index=index, assign=assign) 154 if ret: 155 return df
/opt/conda/lib/python3.5/site-packages/fastparquet/core.py in read_row_group(file, rg, columns, categories, schema_helper, cats, selfmade, index, assign) 300 raise RuntimeError('Going with pre-allocation!') 301 read_row_group_arrays(file, rg, columns, categories, schema_helper, --> 302 cats, selfmade, assign=assign) 303 304 for cat in cats:
/opt/conda/lib/python3.5/site-packages/fastparquet/core.py in read_row_group_arrays(file, rg, columns, categories, schema_helper, cats, selfmade, assign) 289 read_col(column, schema_helper, file, use_cat=use, 290 selfmade=selfmade, assign=out[name], --> 291 catdef=out[name+'-catdef'] if use else None) 292 293
/opt/conda/lib/python3.5/site-packages/fastparquet/core.py in read_col(column, schema_helper, infile, use_cat, grab_dict, selfmade, assign, catdef) 196 dic = None 197 if ph.type == parquet_thrift.PageType.DICTIONARY_PAGE: --> 198 dic = np.array(read_dictionary_page(infile, schema_helper, ph, cmd)) 199 ph = read_thrift(infile, parquet_thrift.PageHeader) 200 dic = convert(dic, se)
/opt/conda/lib/python3.5/site-packages/fastparquet/core.py in read_dictionary_page(file_obj, schema_helper, page_header, column_metadata) 152 Consumes data using the plain encoding and returns an array of values. 153 """ --> 154 raw_bytes = _read_page(file_obj, page_header, column_metadata) 155 if column_metadata.type == parquet_thrift.Type.BYTE_ARRAY: 156 # no faster way to read variable-length-strings?
/opt/conda/lib/python3.5/site-packages/fastparquet/core.py in _read_page(file_obj, page_header, column_metadata) 28 """Read the data page from the given file-object and convert it to raw, uncompressed bytes (if necessary).""" 29 raw_bytes = file_obj.read(page_header.compressed_page_size) ---> 30 raw_bytes = decompress_data(raw_bytes, column_metadata.codec) 31 32 assert len(raw_bytes) == page_header.uncompressed_page_size, \
/opt/conda/lib/python3.5/site-packages/fastparquet/compression.py in decompress_data(data, algorithm) 48 def decompress_data(data, algorithm='gzip'): 49 if isinstance(algorithm, int): ---> 50 algorithm = rev_map[algorithm] 51 if algorithm.upper() not in decompressions: 52 raise RuntimeError("Decompression '%s' not available. Options: %s" %
KeyError: 1
最佳答案
该错误可能表明在您的系统上未找到用于解压 SNAPPY 的库 - 尽管错误消息显然可以更清楚!
根据您的系统,以下行可能会为您解决此问题:
conda install python-snappy
或
pip install python-snappy
如果您在 Windows 上,构建链可能无法工作,也许您需要从 here 安装.
关于python - python fastparquet 模块可以读取压缩的 Parquet 文件吗?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42234944/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!