- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试制作一个自适应的“大约相等”方法(用 C# 编写,但问题是一般性的)接受两个 double 并返回一个 bool 值(如果它们是否“大约相等”)。自适应是指:
1.234 和 1.235 ==> 正确
但是
1.234567 和 1.234599 ==> 错误
也就是说,'about equal'的精度适应了数字的精度。
我在 How do I find if two variables are approximately equals? 找到了舍入的概念,但对于 epsilon 使用什么仍然是一个开放式的问题。
有人知道解决此类问题的最佳做法吗?提前致谢!
编辑:我最初的问题没有包含足够的信息来说明我想要得到什么。对此感到抱歉,我深表歉意。我想要一个程序,可以将更高的精度数处理为更高的标准,同时对更低的精度数更宽松。对的更多示例是(其中“(0)”是隐含的零):
1.077 和 1.07(0) 返回 false(因为 77 与 70 有很大不同)
1.000077 和 1.00007(0) 返回 false(因为 77 与 70 有很大不同)
1.071 和 1.07(0) 返回 true(因为 71 接近 70
1.000071 和 1.00007(0) 返回真(因为 71 接近 70)
无论实现代码如何,我假设都会有某种“容差”变量来确定什么是“非常不同”和什么是“接近”。
最佳答案
比较 float 的一种方法是比较将它们分开的浮点表示的数量。此解决方案对数字的大小无关紧要,因此您不必担心“epsilon”。
可以找到算法的描述 here (最后是 AlmostEqual2sComplement 函数)这是我的 C# 版本。
public static class DoubleComparerExtensions
{
public static bool AlmostEquals(this double left, double right, long representationTolerance)
{
long leftAsBits = left.ToBits2Complement();
long rightAsBits = right.ToBits2Complement();
long floatingPointRepresentationsDiff = Math.Abs(leftAsBits - rightAsBits);
return (floatingPointRepresentationsDiff <= representationTolerance);
}
private static unsafe long ToBits2Complement(this double value)
{
double* valueAsDoublePtr = &value;
long* valueAsLongPtr = (long*)valueAsDoublePtr;
long valueAsLong = *valueAsLongPtr;
return valueAsLong < 0
? (long)(0x8000000000000000 - (ulong)valueAsLong)
: valueAsLong;
}
}
如果你想比较 float ,把所有的double
改成float
,把所有的long
改成int
和 0x8000000000000000
到 0x80000000
。
关于c# - 将 double 与自适应近似相等进行比较,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/10419771/
所以我必须用以下方法来近似 Pi:4*(1-1/3+1/5-1/7+1/9-...)。它也应该基于迭代次数。所以函数应该是这样的: >>> piApprox(1) 4.0 >>> piApprox(1
输入:图 G 输出:多个独立集,使得一个节点对所有独立集的成员资格是唯一的。因此,节点与它自己的集合中的任何节点都没有连接。这是一个示例路径。 由于这里需要澄清,因此再次改写: 将给定的图划分为多个集
我已经使用查找表和低阶多项式近似实现了定点 log2 函数,但对整个 32 位定点范围 [-1,+1) 的准确度不太满意。输入格式为 s0.31,输出格式为 s15.16。 我在这里发布这个问题,以便
大多数拥有CS学位的人当然会知道Big O stands for是什么。 它可以帮助我们评估算法的可扩展性。 但是我很好奇,您如何计算或估算算法的复杂性? 最佳答案 我会尽力在这里简单地解释它,但要注
我的目标是近似二项式变量总和的分布。我使用以下纸张The Distribution of a Sum of Binomial Random Variables作者:肯·巴特勒和迈克尔·斯蒂芬斯。 我想
我知道有方法 approximate cubic Bezier curves ( this page 也是一个很好的引用),但是有没有更快的方法来逼近 N 次贝塞尔曲线?还是只能使用下面的概括? 来自
大多数拥有CS学位的人当然会知道Big O stands for是什么。 它有助于我们评估算法的可扩展性。 但是我很好奇,您如何计算或估算算法的复杂性? 最佳答案 我会尽力在这里简单地解释它,但要注意
我是 C++ 和编码本身的初学者,所以请原谅任何词汇错误。我找不到这个具体问题,但在互联网上找到了类似的问题,但我仍然很难获得我需要的结果。 所以我使用莱布尼茨公式来近似 pi,即: pi = 4 ·
有多种方法可以通过显示名称查找联系人。例如这个答案Android - Find a contact by display name 但是我需要找到模糊匹配的联系人。例如如果找不到“Kim”,我需要返回
我一直在尝试使用以下代码使用级数表示来近似 e 以获得尽可能多的精度数字,但无论我计算多少项,精度数字的数量似乎都保持不变。即: 2.718281984329223632812500000000000
大多数拥有CS学位的人当然会知道Big O stands for是什么。 它可以帮助我们评估算法的可扩展性。 但是我很好奇,您如何计算或估算算法的复杂性? 最佳答案 我会尽力在这里简单地解释它,但要注
大多数拥有CS学位的人当然会知道Big O stands for是什么。 它可以帮助我们评估算法的可扩展性。 但是我很好奇,您如何计算或估算算法的复杂性? 最佳答案 我会尽力在这里简单地解释它,但要注
大多数拥有计算机科学学位的人肯定知道什么是Big O stands for。 它有助于我们衡量一个算法的实际效率,如果您知道在what category the problem you are try
大多数拥有计算机科学学位的人肯定知道什么是Big O stands for。 它有助于我们衡量一个算法的实际效率,如果您知道在what category the problem you are try
我做了很多随机的数学程序来帮助我完成作业(合成除法是最有趣的),现在我想反转一个激进的表达式。 例如,在我方便的 TI 计算器中我得到 .2360679775 好吧,我想将该数字转换为等效的无理数表达
我可以通过 CPU 分析器看到,compute_variances() 是我项目的瓶颈。 % cumulative self self total
大多数拥有 CS 学位的人肯定知道什么 Big O stands for . 它帮助我们衡量算法的可扩展性。 但我很好奇,你如何计算或近似算法的复杂性? 最佳答案 我会尽我所能用简单的术语在这里解释它
这是迄今为止我的代码, from math import * def main(): sides = eval(input("Enter the number of sides:"))
关闭。这个问题是not reproducible or was caused by typos .它目前不接受答案。 这个问题是由于错别字或无法再重现的问题引起的。虽然类似的问题可能是on-topi
大多数拥有 CS 学位的人肯定知道什么 Big O stands for . 它帮助我们衡量算法的扩展性。 但我很好奇,你如何计算或近似算法的复杂性? 最佳答案 我会尽我所能用简单的术语在这里解释它,
我是一名优秀的程序员,十分优秀!