- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我遇到占位符错误。
我不知道这是什么意思,因为我在 sess.run(..., {_y: y, _X: X})
...功能性 MWE 重现错误:
import tensorflow as tf
import numpy as np
def init_weights(shape):
return tf.Variable(tf.random_normal(shape, stddev=0.01))
class NeuralNet:
def __init__(self, hidden):
self.hidden = hidden
def __del__(self):
self.sess.close()
def fit(self, X, y):
_X = tf.placeholder('float', [None, None])
_y = tf.placeholder('float', [None, 1])
w0 = init_weights([X.shape[1], self.hidden])
b0 = tf.Variable(tf.zeros([self.hidden]))
w1 = init_weights([self.hidden, 1])
b1 = tf.Variable(tf.zeros([1]))
self.sess = tf.Session()
self.sess.run(tf.initialize_all_variables())
h = tf.nn.sigmoid(tf.matmul(_X, w0) + b0)
self.yp = tf.nn.sigmoid(tf.matmul(h, w1) + b1)
C = tf.reduce_mean(tf.square(self.yp - y))
o = tf.train.GradientDescentOptimizer(0.5).minimize(C)
correct = tf.equal(tf.argmax(_y, 1), tf.argmax(self.yp, 1))
accuracy = tf.reduce_mean(tf.cast(correct, "float"))
tf.scalar_summary("accuracy", accuracy)
tf.scalar_summary("loss", C)
merged = tf.merge_all_summaries()
import shutil
shutil.rmtree('logs')
writer = tf.train.SummaryWriter('logs', self.sess.graph_def)
for i in xrange(1000+1):
if i % 100 == 0:
res = self.sess.run([o, merged], feed_dict={_X: X, _y: y})
else:
self.sess.run(o, feed_dict={_X: X, _y: y})
return self
def predict(self, X):
yp = self.sess.run(self.yp, feed_dict={_X: X})
return (yp >= 0.5).astype(int)
X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1]])
y = np.array([[0],[1],[1],[0]]])
m = NeuralNet(10)
m.fit(X, y)
yp = m.predict(X)[:, 0]
print accuracy_score(y, yp)
错误:
I tensorflow/core/common_runtime/local_device.cc:40] Local device intra op parallelism threads: 8
I tensorflow/core/common_runtime/direct_session.cc:58] Direct session inter op parallelism threads: 8
0.847222222222
W tensorflow/core/common_runtime/executor.cc:1076] 0x2340f40 Compute status: Invalid argument: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float
[[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
W tensorflow/core/common_runtime/executor.cc:1076] 0x2340f40 Compute status: Invalid argument: You must feed a value for placeholder tensor 'Placeholder' with dtype float
[[Node: Placeholder = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Traceback (most recent call last):
File "neuralnet.py", line 64, in <module>
m.fit(X[tr], y[tr, np.newaxis])
File "neuralnet.py", line 44, in fit
res = self.sess.run([o, merged], feed_dict={self._X: X, _y: y})
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 368, in run
results = self._do_run(target_list, unique_fetch_targets, feed_dict_string)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 444, in _do_run
e.code)
tensorflow.python.framework.errors.InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float
[[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Caused by op u'Placeholder_1', defined at:
File "neuralnet.py", line 64, in <module>
m.fit(X[tr], y[tr, np.newaxis])
File "neuralnet.py", line 16, in fit
_y = tf.placeholder('float', [None, 1])
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/array_ops.py", line 673, in placeholder
name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_array_ops.py", line 463, in _placeholder
name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/op_def_library.py", line 664, in apply_op
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1834, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1043, in __init__
self._traceback = _extract_stack()
如果我删除 tf.merge_all_summaries()
或从 self.sess.run([o, merged], ...)
然后它运行正常。
这看起来类似于这篇文章: Error when computing summaries in TensorFlow但是,我没有使用 iPython...
最佳答案
tf.merge_all_summaries()
函数很方便,但也有些危险:它合并默认图中的所有摘要,其中包括来自之前的任何摘要——显然是未连接的- 调用代码也将摘要节点添加到默认图形。如果旧的摘要节点依赖于旧的占位符,您将得到类似于您在问题中显示的错误(以及 previous questions)。
有两个独立的解决方法:
确保您明确收集了您希望计算的摘要。这就像使用显式 tf.merge_summary()
一样简单op 在你的例子中:
accuracy_summary = tf.scalar_summary("accuracy", accuracy)
loss_summary = tf.scalar_summary("loss", C)
merged = tf.merge_summary([accuracy_summary, loss_summary])
确保每次创建一组新的摘要时,都在一个新图表中进行。推荐的样式是使用显式默认图:
with tf.Graph().as_default():
# Build model and create session in this scope.
#
# Only summary nodes created in this scope will be returned by a call to
# `tf.merge_all_summaries()`
或者,如果您使用的是最新开源版本的 TensorFlow(或即将发布的 0.7.0 版本),您可以调用 tf.reset_default_graph()
重置图的状态并删除所有旧的摘要节点。
关于python - TensorFlow:使用 tf.merge_all_summaries() 时出现 PlaceHolder 错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35413618/
在 Tensorflow(从 v1.2.1 开始)中,似乎有(至少)两个并行 API 来构建计算图。 tf.nn 中有函数,如 conv2d、avg_pool、relu、dropout,tf.laye
我正在处理眼睛轨迹数据和卷积神经网络。我被要求使用 tf.reduce_max(lastconv, axis=2)代替 MaxPooling 层和 tf.reduce_sum(lastconv,axi
TensorFlow 提供了 3 种不同的数据存储格式 tf.train.Feature .它们是: tf.train.BytesList tf.train.FloatList tf.train.In
我正在尝试为上下文强盗问题 (https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part
我在使用 Tensorflow 时遇到问题: 以下代码为卷积 block 生成正确的图: def conv_layer(self, inputs, filter_size = 3, num_filte
我正在将我的训练循环迁移到 Tensorflow 2.0 API .在急切执行模式下,tf.GradientTape替换 tf.gradients .问题是,它们是否具有相同的功能?具体来说: 在函数
tensorflow 中 tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) 的目的是什么? 更多上下文:
我一直在努力学习 TensorFlow,我注意到不同的函数用于相同的目标。例如,为了平方变量,我看到了 tf.square()、tf.math.square() 和 tf.keras.backend.
我正在尝试使用自动编码器开发图像着色器。有 13000 张训练图像。如果我使用 tf.data,每个 epoch 大约需要 45 分钟,如果我使用 tf.utils.keras.Sequence 大约
我尝试按照 tensorflow 教程实现 MNIST CNN 神经网络,并找到这些实现 softmax 交叉熵的方法给出了不同的结果: (1) 不好的结果 softmax = tf.nn.softm
其实,我正在coursera上做deeplearning.ai的作业“Art Generation with Neural Style Transfer”。在函数 compute_layer_styl
训练神经网络学习“异或” 我正在尝试使用“批量归一化”,我创建了一个批量归一化层函数“batch_norm1”。 import tensorflow as tf import nump
我正在尝试协调来自 TF“图形和 session ”指南以及 TF“Keras”指南和 TF Estimators 指南的信息。现在在前者中它说 tf.Session 使计算图能够访问物理硬件以执行图
我正在关注此处的多层感知器示例:https://github.com/aymericdamien/TensorFlow-Examples我对函数 tf.nn.softmax_cross_entropy
回到 TensorFlow = 2.0 中消失了。因此,像这样的解决方案...... with tf.variable_scope("foo"): with tf.variable_scope
我按照官方网站中的步骤安装了tensorflow。但是,在该网站中,作为安装的最后一步,他们给出了一行代码来“验证安装”。但他们没有告诉这段代码会给出什么输出。 该行是: python -c "imp
代码: x = tf.constant([1.,2.,3.], shape = (3,2,4)) y = tf.constant([1.,2.,3.], shape = (3,21,4)) tf.ma
我正在尝试从 Github 训练一个 3D 分割网络.我的模型是用 Keras (Python) 实现的,这是一个典型的 U-Net 模型。模型,总结如下, Model: "functional_3"
我正在使用 TensorFlow 2。我正在尝试优化一个函数,该函数使用经过训练的 tensorflow 模型(毒药)的损失。 @tf.function def totalloss(x): x
试图了解 keras 优化器中的 SGD 优化代码 (source code)。在 get_updates 模块中,我们有: # momentum shapes = [K.int_shape(p) f
我是一名优秀的程序员,十分优秀!