gpt4 book ai didi

python - TensorFlow:使用 tf.merge_all_summaries() 时出现 PlaceHolder 错误

转载 作者:太空狗 更新时间:2023-10-30 00:23:23 30 4
gpt4 key购买 nike

我遇到占位符错误。

我不知道这是什么意思,因为我在 sess.run(..., {_y: y, _X: X})...功能性 MWE 重现错误:

import tensorflow as tf
import numpy as np

def init_weights(shape):
return tf.Variable(tf.random_normal(shape, stddev=0.01))

class NeuralNet:
def __init__(self, hidden):
self.hidden = hidden

def __del__(self):
self.sess.close()

def fit(self, X, y):
_X = tf.placeholder('float', [None, None])
_y = tf.placeholder('float', [None, 1])

w0 = init_weights([X.shape[1], self.hidden])
b0 = tf.Variable(tf.zeros([self.hidden]))
w1 = init_weights([self.hidden, 1])
b1 = tf.Variable(tf.zeros([1]))

self.sess = tf.Session()
self.sess.run(tf.initialize_all_variables())

h = tf.nn.sigmoid(tf.matmul(_X, w0) + b0)
self.yp = tf.nn.sigmoid(tf.matmul(h, w1) + b1)

C = tf.reduce_mean(tf.square(self.yp - y))
o = tf.train.GradientDescentOptimizer(0.5).minimize(C)

correct = tf.equal(tf.argmax(_y, 1), tf.argmax(self.yp, 1))
accuracy = tf.reduce_mean(tf.cast(correct, "float"))
tf.scalar_summary("accuracy", accuracy)
tf.scalar_summary("loss", C)

merged = tf.merge_all_summaries()
import shutil
shutil.rmtree('logs')
writer = tf.train.SummaryWriter('logs', self.sess.graph_def)

for i in xrange(1000+1):
if i % 100 == 0:
res = self.sess.run([o, merged], feed_dict={_X: X, _y: y})
else:
self.sess.run(o, feed_dict={_X: X, _y: y})
return self

def predict(self, X):
yp = self.sess.run(self.yp, feed_dict={_X: X})
return (yp >= 0.5).astype(int)


X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1]])
y = np.array([[0],[1],[1],[0]]])

m = NeuralNet(10)
m.fit(X, y)
yp = m.predict(X)[:, 0]
print accuracy_score(y, yp)

错误:

I tensorflow/core/common_runtime/local_device.cc:40] Local device intra op parallelism threads: 8
I tensorflow/core/common_runtime/direct_session.cc:58] Direct session inter op parallelism threads: 8
0.847222222222
W tensorflow/core/common_runtime/executor.cc:1076] 0x2340f40 Compute status: Invalid argument: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float
[[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
W tensorflow/core/common_runtime/executor.cc:1076] 0x2340f40 Compute status: Invalid argument: You must feed a value for placeholder tensor 'Placeholder' with dtype float
[[Node: Placeholder = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Traceback (most recent call last):
File "neuralnet.py", line 64, in <module>
m.fit(X[tr], y[tr, np.newaxis])
File "neuralnet.py", line 44, in fit
res = self.sess.run([o, merged], feed_dict={self._X: X, _y: y})
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 368, in run
results = self._do_run(target_list, unique_fetch_targets, feed_dict_string)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 444, in _do_run
e.code)
tensorflow.python.framework.errors.InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float
[[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Caused by op u'Placeholder_1', defined at:
File "neuralnet.py", line 64, in <module>
m.fit(X[tr], y[tr, np.newaxis])
File "neuralnet.py", line 16, in fit
_y = tf.placeholder('float', [None, 1])
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/array_ops.py", line 673, in placeholder
name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_array_ops.py", line 463, in _placeholder
name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/op_def_library.py", line 664, in apply_op
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1834, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1043, in __init__
self._traceback = _extract_stack()

如果我删除 tf.merge_all_summaries() 或从 self.sess.run([o, merged], ...) 然后它运行正常。

这看起来类似于这篇文章: Error when computing summaries in TensorFlow但是,我没有使用 iPython...

最佳答案

tf.merge_all_summaries() 函数很方便,但也有些危险:它合并默认图中的所有摘要,其中包括来自之前的任何摘要——显然是未连接的- 调用代码也将摘要节点添加到默认图形。如果旧的摘要节点依赖于旧的占位符,您将得到类似于您在问题中显示的错误(以及 previous questions)。

有两个独立的解决方法:

  1. 确保您明确收集了您希望计算的摘要。这就像使用显式 tf.merge_summary() 一样简单op 在你的例子中:

    accuracy_summary = tf.scalar_summary("accuracy", accuracy)
    loss_summary = tf.scalar_summary("loss", C)

    merged = tf.merge_summary([accuracy_summary, loss_summary])
  2. 确保每次创建一组新的摘要时,都在一个新图表中进行。推荐的样式是使用显式默认图:

    with tf.Graph().as_default():
    # Build model and create session in this scope.
    #
    # Only summary nodes created in this scope will be returned by a call to
    # `tf.merge_all_summaries()`

    或者,如果您使用的是最新开源版本的 TensorFlow(或即将发布的 0.7.0 版本),您可以调用 tf.reset_default_graph()重置图的状态并删除所有旧的摘要节点。

关于python - TensorFlow:使用 tf.merge_all_summaries() 时出现 PlaceHolder 错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35413618/

30 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com