- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我目前正在尝试实现一个 LSTM 自动编码器,以便将交易时间序列(Berka 数据集)压缩为较小的编码向量。我正在处理的数据看起来像 this(它是整个时间内单个帐户的累计余额)。
我决定使用 Keras,并尝试按照 this 创建一个简单的自动编码器教程。该模型不起作用。
我的代码是这样的:
import keras
from keras import Input, Model
from keras.layers import Lambda, LSTM, RepeatVector
from matplotlib import pyplot as plt
from scipy import io
from sklearn.preprocessing import MinMaxScaler
import numpy as np
class ResultPlotter(keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs={}):
plt.subplots(2, 2, figsize=(10, 3))
indexes = np.random.randint(datapoints, size=4)
for i in range(4):
plt.subplot(2, 2, i+1)
plt.plot(sparse_balances[indexes[i]])
result = sequence_autoencoder.predict(sparse_balances[0:1])
plt.plot(result.T)
plt.xticks([])
plt.yticks([])
plt.tight_layout()
plt.show()
return
result_plotter = ResultPlotter()
sparse_balances = io.mmread("my_path_to_sparse_balances.mtx")
sparse_balances = sparse_balances.todense()
scaler = MinMaxScaler(feature_range=(0, 1))
sparse_balances = scaler.fit_transform(sparse_balances)
N = sparse_balances.shape[0]
D = sparse_balances.shape[1]
batch_num = 32
timesteps = 500
latent_dim = 32
datapoints = N
model_inputs = Input(shape=(timesteps,))
inputs = Lambda(lambda x: keras.backend.expand_dims(x, -1))(model_inputs)
encoded = LSTM(latent_dim)(inputs)
decoded = RepeatVector(timesteps)(encoded)
decoded = LSTM(1, return_sequences=True)(decoded)
decoded = Lambda(lambda x: keras.backend.squeeze(x, -1))(decoded)
sequence_autoencoder = Model(model_inputs, decoded)
encoder = Model(model_inputs, encoded)
earlyStopping = keras.callbacks.EarlyStopping(monitor='loss', patience=5, verbose=0, mode='auto')
sequence_autoencoder.compile(loss='mean_squared_error', optimizer='adam')
sequence_autoencoder.fit(sparse_balances[:datapoints], sparse_balances[:datapoints],
batch_size=batch_num, epochs=100,
callbacks=[earlyStopping, result_plotter])
我不会添加用于生成 sparse_balanced.mtx 的代码,以保持一切清晰,请随时索取它,我会发布它。
问题是自动编码器似乎卡在了预测 single line 上。 ,而不是返回紧密跟随输入趋势的输出,但经过广泛的研究我仍然必须找到解决方案。我做了一些实验,使用密集层作为模型的潜在输出部分,它能够返回 much better results。 .
接下来的问题是:假设通过使用 LSTM->Dense 或 Dense->Dense 自动编码器我能够获得不错的结果,而使用 Dense->LSTM 和 LSTM->LSTM 会导致相同的错误预测, 问题出在我的模型中、概念中还是其他地方?
非常感谢每条评论,谢谢。
最佳答案
问题是我的数据集太小众了,无法轻易地被 LSTM 自动编码。我目前正在写关于交易生成的硕士论文,我详分割析了这个问题。如果您没有特别使用这个数据集,我建议尝试使用一些与时间相关的合成数据,例如正弦波、锯齿波等,因为模型应该能够在这些数据上正常工作。如果它仍然不起作用,则可能是您的代码中存在一些错误。
关于python - 时间序列上的 LSTM 自动编码器,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48646743/
我有课 class Header { @FCBTag(type="type1") --My custom annotation int a = "valueA"; @FCBTa
我一直在使用 Apache MINA 并正在学习 Netty。我过去使用过 MINA 累积编码器/解码器,我有兴趣看看 Netty 是否有类似的功能。我查看了 API,但没有看到任何内容。 最佳答案
我有一组使用 wsdl2java (Axis 1.4) 创建的类,我正在寻找一种方法来解码和编码来自/到字符串和对象的数据。我已经编写了一个 JAXB 解码器,它适用于我们的一些较新的内部对象,因为我
在我的自定义类 WLNetworkClient 中,我必须实现这样的方法: required init(coder aDecoder: NSCoder) { fatalError("init(
基于 transformer 的编码器-解码器模型是 表征学习 和 模型架构 这两个领域多年研究成果的结晶。本文简要介绍了神经编码器-解码器模型的历史,更多背景知识,建议读者阅读由 Seba
在使用 FFMPEG android java 库时发生以下异常的视频播放速度(使视频变慢)。 [aac @ 0x416c26f0] The encoder 'aac' is experimental
我正在从一个程序运行 ffmpeg,我们自己构建了 ffmpeg(我们没有使用包管理器或预构建的东西安装它)。 这是构建的命令: 2020-07-31 12:14:11.942 INFO ffmpeg
许多基于LSTM的seq2seq编码器-解码器架构教程(例如英法翻译),将模型定义如下: encoder_inputs = Input(shape=(None,)) en_x= Embedding(
如何覆盖使用 marshmallow 的 JSON 编码器库,以便它可以序列化 Decimal字段?我想我可以通过覆盖 json_module 来做到这一点在基地Schema或 Meta课,但我不知道
在我的 Grails 2.5.0 应用程序中,我使用了一组自定义 JSON 编码器来严格控制由我的 REST 端点返回的 JSON 格式。目前我在这样的服务中注册这些编码器 class Marshal
我需要多个自定义 JSON 编码器,因为我想针对不同的目的以不同的方式进行编码。我知道如何使用以下方法设置自定义编码器应用程序: JSON.registerObjectMarshaller(MyCla
查看文档,它是这样说的: https://netty.io/4.0/api/io/netty/channel/ChannelPipeline.html A user is supposed to ha
我希望为以下案例类提供 JSON 编码器: import io.circe.generic.extras.Configuration final case class Hello[T]( so
我正在构建一个 JPEG 图像编码器。就目前情况而言,为了对图像进行编码,用户输入他们希望编码的文件的名称以及由此创建的文件的名称。 我希望用户能够在命令行中设置编码的质量。我尝试重命名 new Jp
我有想要在 webview 中显示的 html 文本。 如specification ,数据必须经过 URI 转义。所以我尝试使用 URLEncoder.encode() 函数,但这对我没有帮助,因为
我目前正在自己实现 PNG 滤镜。我正在使用神经网络尝试创建比当前现有的 PNG 过滤器更好的预测: 0 - 无 1 - 子 2 - 向上 3 - 平均 4 - 派斯 5 - 我的实现(使用神经网
让我们假设我们有与 Schema 一致的 XML 和带有一些公共(public)字段的 Java 类: public clas
在我的 Java 应用程序中,我正在寻找 URLEncoder.encode(String s, String enc) 的流媒体版本.我想使用“application/x-www-form-urle
我确实有一个对象层次结构,我想使用“import javax.xml.bind.Marshaller”将其从 Java 对象转换为 xml。我的java类文件被编码在“Cp1252”中,我无法更改它。
使用 Netty 4.0.27 和 Java 1.8.0_20 所以我试图通过构建一个简单的聊天服务器(我猜是典型的网络教程程序?)来了解 Netty 的工作原理。设计我自己的简单协议(protoco
我是一名优秀的程序员,十分优秀!