- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
出于某种原因,我无法从该字典创建 pd.Series
对象。我和另一个非常相似的人一起做了。
注意:更新于 2018-June-04看起来这有一个 GitHub 问题: https://github.com/pandas-dev/pandas/issues/15457
pd.__version__
'0.23.0'
import pandas as pd
from numpy import array
import numpy as np
param_index = OrderedDict([((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 1)), array([ 0, 40, 80, 120, 160, 200])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 2)), array([ 1, 41, 81, 121, 161, 201])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 3)), array([ 2, 42, 82, 122, 162, 202])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 5)), array([ 3, 43, 83, 123, 163, 203])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 8)), array([ 4, 44, 84, 124, 164, 204])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), array([ 5, 45, 85, 125, 165, 205])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), array([ 6, 46, 86, 126, 166, 206])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), array([ 7, 47, 87, 127, 167, 207])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), array([ 8, 48, 88, 128, 168, 208])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), array([ 9, 49, 89, 129, 169, 209])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 1)), array([ 10, 50, 90, 130, 170, 210])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 2)), array([ 11, 51, 91, 131, 171, 211])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 3)), array([ 12, 52, 92, 132, 172, 212])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 5)), array([ 13, 53, 93, 133, 173, 213])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 8)), array([ 14, 54, 94, 134, 174, 214])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 1)), array([ 15, 55, 95, 135, 175, 215])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 2)), array([ 16, 56, 96, 136, 176, 216])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 3)), array([ 17, 57, 97, 137, 177, 217])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 5)), array([ 18, 58, 98, 138, 178, 218])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 8)), array([ 19, 59, 99, 139, 179, 219])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 1)), array([ 20, 60, 100, 140, 180, 220])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 2)), array([ 21, 61, 101, 141, 181, 221])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 3)), array([ 22, 62, 102, 142, 182, 222])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 5)), array([ 23, 63, 103, 143, 183, 223])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 8)), array([ 24, 64, 104, 144, 184, 224])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), array([ 25, 65, 105, 145, 185, 225])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), array([ 26, 66, 106, 146, 186, 226])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), array([ 27, 67, 107, 147, 187, 227])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), array([ 28, 68, 108, 148, 188, 228])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), array([ 29, 69, 109, 149, 189, 229])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 1)), array([ 30, 70, 110, 150, 190, 230])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 2)), array([ 31, 71, 111, 151, 191, 231])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 3)), array([ 32, 72, 112, 152, 192, 232])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 5)), array([ 33, 73, 113, 153, 193, 233])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 8)), array([ 34, 74, 114, 154, 194, 234])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 1)), array([ 35, 75, 115, 155, 195, 235])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 2)), array([ 36, 76, 116, 156, 196, 236])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 3)), array([ 37, 77, 117, 157, 197, 237])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 5)), array([ 38, 78, 118, 158, 198, 238])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 8)), array([ 39, 79, 119, 159, 199, 239]))])
pd.Series(list(param_index.values()), index=param_index.keys())
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/algorithms.py in factorize(values, sort, order, na_sentinel, size_hint)
634 try:
--> 635 order = uniques.argsort()
636 order2 = order.argsort()
TypeError: '<' not supported between instances of 'NoneType' and 'str'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/sorting.py in safe_sort(values, labels, na_sentinel, assume_unique)
445 try:
--> 446 sorter = values.argsort()
447 ordered = values.take(sorter)
TypeError: '<' not supported between instances of 'NoneType' and 'str'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in __init__(self, values, categories, ordered, dtype, fastpath)
344 try:
--> 345 codes, categories = factorize(values, sort=True)
346 except TypeError:
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/util/_decorators.py in wrapper(*args, **kwargs)
176 kwargs[new_arg_name] = new_arg_value
--> 177 return func(*args, **kwargs)
178 return wrapper
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/algorithms.py in factorize(values, sort, order, na_sentinel, size_hint)
642 na_sentinel=na_sentinel,
--> 643 assume_unique=True)
644
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/sorting.py in safe_sort(values, labels, na_sentinel, assume_unique)
449 # try this anyway
--> 450 ordered = sort_mixed(values)
451
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/sorting.py in sort_mixed(values)
435 dtype=bool)
--> 436 nums = np.sort(values[~str_pos])
437 strs = np.sort(values[str_pos])
~/anaconda/envs/python3/lib/python3.6/site-packages/numpy/core/fromnumeric.py in sort(a, axis, kind, order)
846 a = asanyarray(a).copy(order="K")
--> 847 a.sort(axis=axis, kind=kind, order=order)
848 return a
TypeError: '<' not supported between instances of 'NoneType' and 'str'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
<ipython-input-72-1f46691300f8> in <module>()
1 param_index = OrderedDict([((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 1)), array([ 0, 40, 80, 120, 160, 200])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 2)), array([ 1, 41, 81, 121, 161, 201])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 3)), array([ 2, 42, 82, 122, 162, 202])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 5)), array([ 3, 43, 83, 123, 163, 203])), ((('criterion', 'gini'), ('max_features', 'log2'), ('min_samples_leaf', 8)), array([ 4, 44, 84, 124, 164, 204])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), array([ 5, 45, 85, 125, 165, 205])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), array([ 6, 46, 86, 126, 166, 206])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), array([ 7, 47, 87, 127, 167, 207])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), array([ 8, 48, 88, 128, 168, 208])), ((('criterion', 'gini'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), array([ 9, 49, 89, 129, 169, 209])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 1)), array([ 10, 50, 90, 130, 170, 210])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 2)), array([ 11, 51, 91, 131, 171, 211])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 3)), array([ 12, 52, 92, 132, 172, 212])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 5)), array([ 13, 53, 93, 133, 173, 213])), ((('criterion', 'gini'), ('max_features', None), ('min_samples_leaf', 8)), array([ 14, 54, 94, 134, 174, 214])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 1)), array([ 15, 55, 95, 135, 175, 215])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 2)), array([ 16, 56, 96, 136, 176, 216])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 3)), array([ 17, 57, 97, 137, 177, 217])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 5)), array([ 18, 58, 98, 138, 178, 218])), ((('criterion', 'gini'), ('max_features', 0.382), ('min_samples_leaf', 8)), array([ 19, 59, 99, 139, 179, 219])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 1)), array([ 20, 60, 100, 140, 180, 220])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 2)), array([ 21, 61, 101, 141, 181, 221])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 3)), array([ 22, 62, 102, 142, 182, 222])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 5)), array([ 23, 63, 103, 143, 183, 223])), ((('criterion', 'entropy'), ('max_features', 'log2'), ('min_samples_leaf', 8)), array([ 24, 64, 104, 144, 184, 224])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 1)), array([ 25, 65, 105, 145, 185, 225])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 2)), array([ 26, 66, 106, 146, 186, 226])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 3)), array([ 27, 67, 107, 147, 187, 227])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 5)), array([ 28, 68, 108, 148, 188, 228])), ((('criterion', 'entropy'), ('max_features', 'sqrt'), ('min_samples_leaf', 8)), array([ 29, 69, 109, 149, 189, 229])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 1)), array([ 30, 70, 110, 150, 190, 230])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 2)), array([ 31, 71, 111, 151, 191, 231])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 3)), array([ 32, 72, 112, 152, 192, 232])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 5)), array([ 33, 73, 113, 153, 193, 233])), ((('criterion', 'entropy'), ('max_features', None), ('min_samples_leaf', 8)), array([ 34, 74, 114, 154, 194, 234])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 1)), array([ 35, 75, 115, 155, 195, 235])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 2)), array([ 36, 76, 116, 156, 196, 236])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 3)), array([ 37, 77, 117, 157, 197, 237])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 5)), array([ 38, 78, 118, 158, 198, 238])), ((('criterion', 'entropy'), ('max_features', 0.382), ('min_samples_leaf', 8)), array([ 39, 79, 119, 159, 199, 239]))])
----> 2 pd.Series(list(param_index.values()), index=param_index.keys())
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/series.py in __init__(self, data, index, dtype, name, copy, fastpath)
180
181 if index is not None:
--> 182 index = _ensure_index(index)
183
184 if data is None:
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/indexes/base.py in _ensure_index(index_like, copy)
4955 index_like = copy(index_like)
4956
-> 4957 return Index(index_like)
4958
4959
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/indexes/base.py in __new__(cls, data, dtype, copy, name, fastpath, tupleize_cols, **kwargs)
433 from .multi import MultiIndex
434 return MultiIndex.from_tuples(
--> 435 data, names=name or kwargs.get('names'))
436 # other iterable of some kind
437 subarr = com._asarray_tuplesafe(data, dtype=object)
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/indexes/multi.py in from_tuples(cls, tuples, sortorder, names)
1354 arrays = lzip(*tuples)
1355
-> 1356 return MultiIndex.from_arrays(arrays, sortorder=sortorder, names=names)
1357
1358 @classmethod
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/indexes/multi.py in from_arrays(cls, arrays, sortorder, names)
1298 from pandas.core.arrays.categorical import _factorize_from_iterables
1299
-> 1300 labels, levels = _factorize_from_iterables(arrays)
1301 if names is None:
1302 names = [getattr(arr, "name", None) for arr in arrays]
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in _factorize_from_iterables(iterables)
2541 # For consistency, it should return a list of 2 lists.
2542 return [[], []]
-> 2543 return map(list, lzip(*[_factorize_from_iterable(it) for it in iterables]))
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in <listcomp>(.0)
2541 # For consistency, it should return a list of 2 lists.
2542 return [[], []]
-> 2543 return map(list, lzip(*[_factorize_from_iterable(it) for it in iterables]))
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in _factorize_from_iterable(values)
2513 codes = values.codes
2514 else:
-> 2515 cat = Categorical(values, ordered=True)
2516 categories = cat.categories
2517 codes = cat.codes
~/anaconda/envs/python3/lib/python3.6/site-packages/pandas/core/arrays/categorical.py in __init__(self, values, categories, ordered, dtype, fastpath)
349 # raise, as we don't have a sortable data structure and so
350 # the user should give us one by specifying categories
--> 351 raise TypeError("'values' is not ordered, please "
352 "explicitly specify the categories order "
353 "by passing in a categories argument.")
TypeError: 'values' is not ordered, please explicitly specify the categories order by passing in a categories argument.
最佳答案
我认为您只需要展平索引列表即可。
In [1]: s = pd.Series(data=param_index.values(), index=[x[0] for x in param_index.keys()])
In [2]: s.head()
Out[2]:
(criterion, gini) [0, 40, 80, 120, 160, 200]
(criterion, gini) [1, 41, 81, 121, 161, 201]
(criterion, gini) [2, 42, 82, 122, 162, 202]
(criterion, gini) [3, 43, 83, 123, 163, 203]
(criterion, gini) [4, 44, 84, 124, 164, 204]
dtype: object
关于python - 无法从字典创建 pd.Series |类型错误 : 'values' is not ordered,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50662091/
我只想国家和资本化的值(value)。 这是我的完整代码: cities = { 'rotterdam': { 'country': 'netherlands',
想更好地了解如何比较对象类型的键。 dicOverall.exists(dic2) 返回 False,而 dicOverall.exists(dic1) 返回 True。我不太确定 .Exists 如
我是编程和 python 的新手,我不知道如何解决这个问题。 my_dict = {'tiger': ['claws', 'sharp teeth', 'four legs', 'stripes'
这个问题已经有答案了: Accessing an object property with a dynamically-computed name (19 个回答) 已关闭 8 年前。 我引用了这篇文
希望有人能帮忙。我正在使用 Python,我希望能够执行以下操作。 我有一组对象(例如形状)和一系列作用于这些对象的命令。命令的格式为命令字符串,后跟可变数量的参数,可以是字符串或整数 例如形状“矩形
我在文件中保存了一本字典。我从 python 交互式 shell 将字典加载到内存中,我的系统监视器显示 python 进程消耗了 4GB。以下命令提供以下输出: size1 = sys.getsiz
如果我运行以下代码: import json foo = [ { "name": "Bob", "occupation": "", "stand
我尝试获取列名及其索引,并将结果保存为数据框或字典: df <- data.frame(a=rnorm(10), b=rnorm(10), c=rnorm(10)) 我该怎么做?谢谢。 column
我正在尝试获取输入,如果字典 logins 有一个与我的输入匹配的键,我想返回该键的值。 logins = { 'admin':'admin', 'turtle':'password1
在 Perl 世界中有一个很棒的东西叫做 CPAN .它是开源 Perl 库的大型存储。 我使用来自 CPAN 的模块,我已经发布了 several distributions myself . 我使
这个问题已经有答案了: Is there a Python dict without values? (3 个回答) 已关闭 3 年前。 我有一个问题,我想跟踪大量值。如果我从未遇到过该值,我将执行操
想知道这是否可能。 我们有一个第 3 方库,其中包含有关用户的识别信息... 与库的主要交互是通过一个以字符串为键的 HashTable,并返回该键的信息对象图。 问题是, key 显然是区分大小写的
我是 .NET 编程的新手。对不起,如果这个问题以前被问过。 我目前正在学习 F#。 Dictionary、Hashtable 和 Map 之间有什么区别?我应该什么时候使用? 我还有一个标题中没有提
我正在尝试使用SVM进行3类分类。为此,我正在SVM培训期间准备词汇表。但是,由于我在SVM预测期间获得随机结果,因此我怀疑我的词汇创建方法中存在一些问题。我创建词汇的代码如下: //Mat trai
就目前情况而言,这个问题不太适合我们的问答形式。我们希望答案得到事实、引用资料或专业知识的支持,但这个问题可能会引发辩论、争论、民意调查或扩展讨论。如果您觉得这个问题可以改进并可能重新开放,visit
假设我有一个以下形式的嵌套字典: {'geo': {'bgcolor': 'white','lakecolor': 'white','caxis': {'gridcolor': 'white', 'l
我有一个 java 应用程序,每秒启动和停止数亿个项目(从外部脚本调用)多次。 Input: String key Output: int value 此应用程序的目的是在从未永远改变的Map(约30
我正在尝试找出字典与集合和数组相比的相对优势和功能。 我发现了一篇很棒的文章here但找不到一个简单的表格来比较所有不同的功能。 有人知道吗? 最佳答案 请参阅下表,对集合和字典进行有用的比较。 (该
我想要一个字典,它可以为字典中没有的任何键返回一个指定的值,例如: var dict = new DictWithDefValues("not specified"); dict.Add("bob78
我是 python 新手,目前仍在学习如何处理列表和字典。 我有这两个功能 def food_database(item_name, size_serv, calorie_serv, prot
我是一名优秀的程序员,十分优秀!