- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
更新:看来我的错误可能是因为我安装 Spark 和/或 Hive 的方式。在 Databricks(托管)笔记本中使用窗口函数似乎非常简单。我需要弄清楚如何在本地进行设置。
我有一个 Spark DataFrame,需要在其上使用 Window 函数。* 我尝试按照 here 上的说明进行操作,但我遇到了一些问题。
设置我的环境:
import os
import sys
import datetime as dt
os.environ["SPARK_HOME"] = '/usr/bin/spark-1.5.2'
os.environ["PYTHONPATH"] = '/usr/bin/spark-1.5.2/python/lib/py4j-0.8.2.1-src.zip'
sys.path.append('/usr/bin/spark-1.5.2/python')
sys.path.append('/usr/bin/spark-1.5.2/python/lib/py4j-0.8.2.1-src.zip')
import pyspark
sc = pyspark.SparkContext()
hiveContext = pyspark.sql.HiveContext(sc)
sqlContext = pyspark.sql.SQLContext(sc)
from pyspark.sql import Row
from pyspark.sql.functions import struct
from pyspark.sql import DataFrame
from collections import OrderedDict
设置我的数据:
test_ts = {'adminDistrict': None,
'city': None,
'country': {'code': 'NA', 'name': 'UNKNOWN'},
'data': [{'timestamp': '2005-08-25T00:00:00Z', 'value': 369.89},
{'timestamp': '2005-08-26T00:00:00Z', 'value': 362.44},
{'timestamp': '2005-08-29T00:00:00Z', 'value': 368.3},
{'timestamp': '2005-08-30T00:00:00Z', 'value': 382.6},
{'timestamp': '2005-08-31T00:00:00Z', 'value': 377.84},
{'timestamp': '2005-09-01T00:00:00Z', 'value': 380.74},
{'timestamp': '2005-09-02T00:00:00Z', 'value': 370.33},
{'timestamp': '2005-09-05T00:00:00Z', 'value': 370.33},
{'timestamp': '2005-09-06T00:00:00Z', 'value': 361.5},
{'timestamp': '2005-09-07T00:00:00Z', 'value': 352.79},
{'timestamp': '2005-09-08T00:00:00Z', 'value': 354.3},
{'timestamp': '2005-09-09T00:00:00Z', 'value': 353.0},
{'timestamp': '2005-09-12T00:00:00Z', 'value': 349.35},
{'timestamp': '2005-09-13T00:00:00Z', 'value': 348.82},
{'timestamp': '2005-09-14T00:00:00Z', 'value': 360.24},
{'timestamp': '2005-09-15T00:00:00Z', 'value': 357.61},
{'timestamp': '2005-09-16T00:00:00Z', 'value': 347.14},
{'timestamp': '2005-09-19T00:00:00Z', 'value': 370.0},
{'timestamp': '2005-09-20T00:00:00Z', 'value': 362.82},
{'timestamp': '2005-09-21T00:00:00Z', 'value': 366.11},
{'timestamp': '2005-09-22T00:00:00Z', 'value': 364.46},
{'timestamp': '2005-09-23T00:00:00Z', 'value': 351.8},
{'timestamp': '2005-09-26T00:00:00Z', 'value': 360.74},
{'timestamp': '2005-09-27T00:00:00Z', 'value': 356.63},
{'timestamp': '2005-09-28T00:00:00Z', 'value': 363.64},
{'timestamp': '2005-09-29T00:00:00Z', 'value': 366.05}],
'maxDate': '2015-12-28T00:00:00Z',
'minDate': '2005-08-25T00:00:00Z',
'name': 'S&P GSCI Crude Oil Spot',
'offset': 0,
'resolution': 'DAY',
'sources': ['trf'],
'subtype': 'Index',
'type': 'Commodities',
'uid': 'TRF_INDEX_Z39824_PI'}
将 json 转换为 DataFrame 的函数:
def ts_to_df(ts):
data = []
for line in ts['data']:
data.append((dt.datetime.strptime(line['timestamp'][:10], '%Y-%m-%d').date(), line['value']))
return sc.parallelize(data).toDF(['Date', ts['name'].replace('&', '').replace(' ', '_')])
获取数据框并查看其中的内容:
test_df = ts_to_df(test_ts)
test_df.show()
这向我展示了这一点:
+----------+----------------------+
| Date|SP_GSCI_Crude_Oil_Spot|
+----------+----------------------+
|2005-08-25| 369.89|
|2005-08-26| 362.44|
|2005-08-29| 368.3|
|2005-08-30| 382.6|
|2005-08-31| 377.84|
|2005-09-01| 380.74|
|2005-09-02| 370.33|
|2005-09-05| 370.33|
|2005-09-06| 361.5|
|2005-09-07| 352.79|
|2005-09-08| 354.3|
|2005-09-09| 353.0|
|2005-09-12| 349.35|
|2005-09-13| 348.82|
|2005-09-14| 360.24|
|2005-09-15| 357.61|
|2005-09-16| 347.14|
|2005-09-19| 370.0|
|2005-09-20| 362.82|
|2005-09-21| 366.11|
+----------+----------------------+
这是我不知道自己在做什么的地方,一切都开始出错了:
from pyspark.sql.functions import lag, col, lead
from pyspark.sql.window import Window
w = Window().partitionBy().orderBy(col('Date'))
test_df.select(lead(test_df.Date, count=1, default=None).over(w).alias("Next_Date")).show()
这给了我这个错误:
Py4JJavaError: An error occurred while calling o59.select. : org.apache.spark.sql.AnalysisException: Could not resolve window function 'lead'. Note that, using window functions currently requires a HiveContext;
看来我需要一个 HiveContext,对吧?我是否需要使用 HiveContext 创建我的 DataFrame?然后让我尝试使用 HiveContext 显式创建一个 DataFrame:
def ts_to_hive_df(ts):
data = []
for line in ts['data']:
data.append({'Date':dt.datetime.strptime(line['timestamp'][:10], '%Y-%m-%d').date(),
ts['name'].replace('&', '').replace(' ', '_'):line['value']})
temp_rdd = sc.parallelize(data).map(lambda x: Row(**x))
return hiveContext.createDataFrame(temp_rdd)
test_df = ts_to_hive_df(test_ts)
test_df.show()
但这给了我这个错误:
TypeError: 'JavaPackage' object is not callable
那么如何使用窗口函数呢?我是否需要使用 HiveContext 创建 DataFrame?如果是这样,那我该怎么做?谁能告诉我我做错了什么?
*我需要知道我的数据是否存在差距。我有“日期”列,对于每一行,按日期排序,我想知道下一行是什么,如果我缺少天数或数据不正确,那么我想使用该行最后一天的数据。如果您知道更好的方法,请告诉我。但我仍然想知道如何让这些 Window 函数正常工作。
最佳答案
这是一个较旧的问题,因此没有实际意义,因为您可能已经使用了新版本的 Spark。我自己正在运行 spark 2.0,所以这可能是作弊。
但是 fwiw:2 个可能的问题。在第一个示例中,我认为 .toDF()
可能默认为 SQLContext 因为你们都调用了。第二,你重构的时候,会不会是在函数内部调用hivecontext?
如果我重构您的第二个 ts_to_df
函数以在函数外部调用 hivecontext,一切都很好。
def ts_to_df(ts):
data = []
for line in ts['data']:
data.append({'Date':dt.datetime.strptime(line['timestamp'][:10], '%Y-%m-%d').date(),
ts['name'].replace('&', '').replace(' ', '_'):line['value']})
return data
data = ts_to_df(test_ts)
test_rdd = sc.parallelize(data).map(lambda x: Row(**x))
test_df = hiveContext.createDataFrame(test_rdd)
from pyspark.sql.functions import lag, col, lead
from pyspark.sql.window import Window
w = Window().partitionBy().orderBy(col('Date'))
test_df.select(lead(test_df.Date, count=1, default=None).over(w).alias("Next_Date")).show()
我得到输出
+----------+
| Next_Date|
+----------+
|2005-08-26|
|2005-08-29|
|2005-08-30|
|2005-08-31|
|2005-09-01|
|2005-09-02|
.....
关于python - 如何获得在 Spark 1.5.2 中使用 HiveContext 制作的 PySpark DataFrame?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34518342/
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
我有一个 largeDataFrame(多列和数十亿行)和一个 smallDataFrame(单列和 10,000 行)。 只要 largeDataFrame 中的 some_identifier 列
我有一个函数,可以在其中规范化 DataFrame 的前 N 列。我想返回规范化的 DataFrame,但不要管原来的。然而,该函数似乎也会对传递的 DataFrame 进行变异! using D
我想在 Scala 中使用指定架构在 DataFrame 上创建。我尝试过使用 JSON 读取(我的意思是读取空文件),但我认为这不是最佳实践。 最佳答案 假设您想要一个具有以下架构的数据框: roo
我正在尝试从数据框中删除一些列,并且不希望返回修改后的数据框并将其重新分配给旧数据框。相反,我希望该函数只修改数据框。这是我尝试过的,但它似乎并没有做我所除外的事情。我的印象是参数是作为引用传递的,而
我有一个包含大约 60000 个数据的庞大数据集。我会首先使用一些标准对整个数据集进行分组,接下来我要做的是将整个数据集分成标准内的许多小数据集,并自动对每个小数据集运行一个函数以获取参数对于每个小数
我遇到了以下问题,并有一个想法来解决它,但没有成功:我有一个月内每个交易日的 DAX 看涨期权和看跌期权数据。经过转换和一些计算后,我有以下 DataFrame: DaxOpt 。现在的目标是消除没有
我正在尝试做一些我认为应该是单行的事情,但我正在努力把它做好。 我有一个大数据框,我们称之为lg,还有一个小数据框,我们称之为sm。每个数据帧都有一个 start 和一个 end 列,以及多个其他列所
我有一个像这样的系列数据帧的数据帧: state1 state2 state3 ... sym1 sym
我有一个大约有 9k 行和 57 列的数据框,这是“df”。 我需要一个新的数据框:'df_final'- 对于“df”的每一行,我必须将每一行复制“x”次,并将每一行中的日期逐一增加,也就是“x”次
假设有一个 csv 文件如下: # data.csv 0,1,2,3,4 a,3.0,3.0,3.0,3.0,3.0 b,3.0,3.0,3.0,3.0,3.0 c,3.0,3.0,3.0,3.0,3
我只想知道是否有人对以下问题有更优雅的解决方案: 我有两个 Pandas DataFrame: import pandas as pd df1 = pd.DataFrame([[1, 2, 3], [
我有一个 pyspark 数据框,我需要将其转换为 python 字典。 下面的代码是可重现的: from pyspark.sql import Row rdd = sc.parallelize([R
我有一个 DataFrame,我想在 @chain 的帮助下对其进行处理。如何存储中间结果? using DataFrames, Chain df = DataFrame(a = [1,1,2,2,2
我有一个包含 3 列的 DataFrame,名为 :x :y 和 :z,它们是 Float64 类型。 :x 和 "y 在 (0,1) 上是 iid uniform 并且 z 是 x 和 y 的总和。
这个问题在这里已经有了答案: pyspark dataframe filter or include based on list (3 个答案) 关闭 2 年前。 只是想知道是否有任何有效的方法来过
我刚找到这个包FreqTables ,它允许人们轻松地从 DataFrames 构建频率表(我正在使用 DataFrames.jl)。 以下代码行返回一个频率表: df = CSV.read("exa
是否有一种快速的方法可以为 sort 指定自定义订单?/sort!在 Julia DataFrames 上? julia> using DataFrames julia> srand(1); juli
在 Python Pandas 和 R 中,可以轻松去除重复的列 - 只需加载数据、分配列名,然后选择那些不重复的列。 使用 Julia Dataframes 处理此类数据的最佳实践是什么?此处不允许
我是一名优秀的程序员,十分优秀!