gpt4 book ai didi

python - R 优化与 Scipy 优化之间的差异 : Nelder-Mead

转载 作者:太空狗 更新时间:2023-10-30 00:12:30 28 4
gpt4 key购买 nike

我写了一个脚本,我相信它应该在 Python 和 R 中产生相同的结果,但它们产生的答案却截然不同。每个尝试通过使用 Nelder-Mead 最小化偏差来将模型拟合到模拟数据。总的来说,R 中的 optim 表现得更好。难道我做错了什么? R 和 SciPy 中实现的算法是否不同?

Python 结果:

>>> res = minimize(choiceProbDev, sparams, (stim, dflt, dat, N), method='Nelder-Mead')

final_simplex: (array([[-0.21483287, -1. , -0.4645897 , -4.65108495],
[-0.21483909, -1. , -0.4645915 , -4.65114839],
[-0.21485426, -1. , -0.46457789, -4.65107337],
[-0.21483727, -1. , -0.46459331, -4.65115965],
[-0.21484398, -1. , -0.46457725, -4.65099805]]), array([107.46037865, 107.46037868, 107.4603787 , 107.46037875,
107.46037875]))
fun: 107.4603786452194
message: 'Optimization terminated successfully.'
nfev: 349
nit: 197
status: 0
success: True
x: array([-0.21483287, -1. , -0.4645897 , -4.65108495])

R 结果:

> res <- optim(sparams, choiceProbDev, stim=stim, dflt=dflt, dat=dat, N=N,
method="Nelder-Mead")

$par
[1] 0.2641022 1.0000000 0.2086496 3.6688737

$value
[1] 110.4249

$counts
function gradient
329 NA

$convergence
[1] 0

$message
NULL

我检查了我的代码,据我所知,这似乎是由于 optim 和 minimize 之间的一些差异,因为我试图最小化的函数(即 choiceProbDev)在每个函数中运行相同(除了输出,我还检查了函数中每个步骤的等价性)。参见示例:

Python choiceProbDev:

>>> choiceProbDev(np.array([0.5, 0.5, 0.5, 3]), stim, dflt, dat, N)
143.31438613033876

R choiceProbDev:

> choiceProbDev(c(0.5, 0.5, 0.5, 3), stim, dflt, dat, N)
[1] 143.3144

我也尝试过调整每个优化函数的容差级别,但我不完全确定容差参数如何在两者之间匹配。不管怎样,到目前为止,我的摆弄并没有使两者达成一致。这是每个的完整代码。

python :

# load modules
import math
import numpy as np
from scipy.optimize import minimize
from scipy.stats import binom

# initialize values
dflt = 0.5
N = 1

# set the known parameter values for generating data
b = 0.1
w1 = 0.75
w2 = 0.25
t = 7

theta = [b, w1, w2, t]

# generate stimuli
stim = np.array(np.meshgrid(np.arange(0, 1.1, 0.1),
np.arange(0, 1.1, 0.1))).T.reshape(-1,2)

# starting values
sparams = [-0.5, -0.5, -0.5, 4]


# generate probability of accepting proposal
def choiceProb(stim, dflt, theta):

utilProp = theta[0] + theta[1]*stim[:,0] + theta[2]*stim[:,1] # proposal utility
utilDflt = theta[1]*dflt + theta[2]*dflt # default utility
choiceProb = 1/(1 + np.exp(-1*theta[3]*(utilProp - utilDflt))) # probability of choosing proposal

return choiceProb

# calculate deviance
def choiceProbDev(theta, stim, dflt, dat, N):

# restrict b, w1, w2 weights to between -1 and 1
if any([x > 1 or x < -1 for x in theta[:-1]]):
return 10000

# initialize
nDat = dat.shape[0]
dev = np.array([np.nan]*nDat)

# for each trial, calculate deviance
p = choiceProb(stim, dflt, theta)
lk = binom.pmf(dat, N, p)

for i in range(nDat):
if math.isclose(lk[i], 0):
dev[i] = 10000
else:
dev[i] = -2*np.log(lk[i])

return np.sum(dev)


# simulate data
probs = choiceProb(stim, dflt, theta)

# randomly generated data based on the calculated probabilities
# dat = np.random.binomial(1, probs, probs.shape[0])
dat = np.array([0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1,
0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1,
0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1,
0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

# fit model
res = minimize(choiceProbDev, sparams, (stim, dflt, dat, N), method='Nelder-Mead')

回复:

library(tidyverse)

# initialize values
dflt <- 0.5
N <- 1

# set the known parameter values for generating data
b <- 0.1
w1 <- 0.75
w2 <- 0.25
t <- 7

theta <- c(b, w1, w2, t)

# generate stimuli
stim <- expand.grid(seq(0, 1, 0.1),
seq(0, 1, 0.1)) %>%
dplyr::arrange(Var1, Var2)

# starting values
sparams <- c(-0.5, -0.5, -0.5, 4)

# generate probability of accepting proposal
choiceProb <- function(stim, dflt, theta){
utilProp <- theta[1] + theta[2]*stim[,1] + theta[3]*stim[,2] # proposal utility
utilDflt <- theta[2]*dflt + theta[3]*dflt # default utility
choiceProb <- 1/(1 + exp(-1*theta[4]*(utilProp - utilDflt))) # probability of choosing proposal
return(choiceProb)
}

# calculate deviance
choiceProbDev <- function(theta, stim, dflt, dat, N){
# restrict b, w1, w2 weights to between -1 and 1
if (any(theta[1:3] > 1 | theta[1:3] < -1)){
return(10000)
}

# initialize
nDat <- length(dat)
dev <- rep(NA, nDat)

# for each trial, calculate deviance
p <- choiceProb(stim, dflt, theta)
lk <- dbinom(dat, N, p)

for (i in 1:nDat){
if (dplyr::near(lk[i], 0)){
dev[i] <- 10000
} else {
dev[i] <- -2*log(lk[i])
}
}
return(sum(dev))
}

# simulate data
probs <- choiceProb(stim, dflt, theta)

# same data as in python script
dat <- c(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1,
0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1,
0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1,
0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

# fit model
res <- optim(sparams, choiceProbDev, stim=stim, dflt=dflt, dat=dat, N=N,
method="Nelder-Mead")

更新:

在打印出每次迭代的估计值后,现在在我看来,这种差异可能源于每种算法采用的“步长”差异。 Scipy 似乎比 optim 采取更小的步骤(并且在不同的初始方向)。我还没有想出如何调整它。

python :

>>> res = minimize(choiceProbDev, sparams, (stim, dflt, dat, N), method='Nelder-Mead')
[-0.5 -0.5 -0.5 4. ]
[-0.525 -0.5 -0.5 4. ]
[-0.5 -0.525 -0.5 4. ]
[-0.5 -0.5 -0.525 4. ]
[-0.5 -0.5 -0.5 4.2]
[-0.5125 -0.5125 -0.5125 3.8 ]
...

回复:

> res <- optim(sparams, choiceProbDev, stim=stim, dflt=dflt, dat=dat, N=N, method="Nelder-Mead")
[1] -0.5 -0.5 -0.5 4.0
[1] -0.1 -0.5 -0.5 4.0
[1] -0.5 -0.1 -0.5 4.0
[1] -0.5 -0.5 -0.1 4.0
[1] -0.5 -0.5 -0.5 4.4
[1] -0.3 -0.3 -0.3 3.6
...

最佳答案

这不完全是“优化器差异是什么”的答案,但我想在这里贡献一些对优化问题的探索。一些要点:

  • 表面是光滑的,因此基于导数的优化器可能会工作得更好(即使没有明确编码的梯度函数,即退回到有限差分近似 - 使用梯度函数它们会更好)
  • 这个表面是对称的,所以它有多个最优值(显然是两个),但它不是高度多峰或粗糙的,所以我认为随机全局优化器不值得麻烦
  • 对于维度不是太高或计算成本不是很高的优化问题,可视化全局表面以了解正在发生的事情是可行的。
  • 对于边界优化,通常要么使用显式处理边界的优化器,将参数的比例更改为不受约束的比例通常更好

这是整个表面的图片:

enter image description here

红色轮廓是对数似然等于 (110, 115, 120) 的轮廓(我能得到的最佳拟合是 LL=105.7)。最佳点位于第二列第三行(由 L-BFGS-B 实现)和第五列第四行(真实参数值)。 (我没有检查目标函数以查看对称性的来源,但我认为它可能很清楚。)Python 的 Nelder-Mead 和 R 的 Nelder-Mead 大约同样糟糕。


参数和问题设置

## initialize values
dflt <- 0.5; N <- 1
# set the known parameter values for generating data
b <- 0.1; w1 <- 0.75; w2 <- 0.25; t <- 7
theta <- c(b, w1, w2, t)
# generate stimuli
stim <- expand.grid(seq(0, 1, 0.1), seq(0, 1, 0.1))
# starting values
sparams <- c(-0.5, -0.5, -0.5, 4)
# same data as in python script
dat <- c(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1,
0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1,
0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1,
0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

目标函数

注意尽可能使用内置函数(plogis()dbinom(...,log=TRUE))。

# generate probability of accepting proposal
choiceProb <- function(stim, dflt, theta){
utilProp <- theta[1] + theta[2]*stim[,1] + theta[3]*stim[,2] # proposal utility
utilDflt <- theta[2]*dflt + theta[3]*dflt # default utility
choiceProb <- plogis(theta[4]*(utilProp - utilDflt)) # probability of choosing proposal
return(choiceProb)
}
# calculate deviance
choiceProbDev <- function(theta, stim, dflt, dat, N){
# restrict b, w1, w2 weights to between -1 and 1
if (any(theta[1:3] > 1 | theta[1:3] < -1)){
return(10000)
}
## for each trial, calculate deviance
p <- choiceProb(stim, dflt, theta)
lk <- dbinom(dat, N, p, log=TRUE)
return(sum(-2*lk))
}
# simulate data
probs <- choiceProb(stim, dflt, theta)

模型拟合

# fit model
res <- optim(sparams, choiceProbDev, stim=stim, dflt=dflt, dat=dat, N=N,
method="Nelder-Mead")
## try derivative-based, box-constrained optimizer
res3 <- optim(sparams, choiceProbDev, stim=stim, dflt=dflt, dat=dat, N=N,
lower=c(-1,-1,-1,-Inf), upper=c(1,1,1,Inf),
method="L-BFGS-B")

py_coefs <- c(-0.21483287, -0.4645897 , -1, -4.65108495) ## transposed?
true_coefs <- c(0.1, 0.25, 0.75, 7) ## transposed?
## start from python coeffs
res2 <- optim(py_coefs, choiceProbDev, stim=stim, dflt=dflt, dat=dat, N=N,
method="Nelder-Mead")

探索对数似然面

cc <- expand.grid(seq(-1,1,length.out=51),
seq(-1,1,length.out=6),
seq(-1,1,length.out=6),
seq(-8,8,length.out=51))
## utility function for combining parameter values
bfun <- function(x,grid_vars=c("Var2","Var3"),grid_rng=seq(-1,1,length.out=6),
type=NULL) {
if (is.list(x)) {
v <- c(x$par,x$value)
} else if (length(x)==4) {
v <- c(x,NA)
}
res <- as.data.frame(rbind(setNames(v,c(paste0("Var",1:4),"z"))))
for (v in grid_vars)
res[,v] <- grid_rng[which.min(abs(grid_rng-res[,v]))]
if (!is.null(type)) res$type <- type
res
}

resdat <- rbind(bfun(res3,type="R_LBFGSB"),
bfun(res,type="R_NM"),
bfun(py_coefs,type="Py_NM"),
bfun(true_coefs,type="true"))

cc$z <- apply(cc,1,function(x) choiceProbDev(unlist(x), dat=dat, stim=stim, dflt=dflt, N=N))
library(ggplot2)
library(viridisLite)
ggplot(cc,aes(Var1,Var4,fill=z))+
geom_tile()+
facet_grid(Var2~Var3,labeller=label_both)+
scale_fill_viridis_c()+
scale_x_continuous(expand=c(0,0))+
scale_y_continuous(expand=c(0,0))+
theme(panel.spacing=grid::unit(0,"lines"))+
geom_contour(aes(z=z),colour="red",breaks=seq(105,120,by=5),alpha=0.5)+
geom_point(data=resdat,aes(colour=type,shape=type))+
scale_colour_brewer(palette="Set1")

ggsave("liksurf.png",width=8,height=8)

关于python - R 优化与 Scipy 优化之间的差异 : Nelder-Mead,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54985793/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com