gpt4 book ai didi

python - ValueError : Dimensions must be equal, 但对于 'MatMul_1' 是 784 和 500 (op : 'MatMul' ) with input shapes: [? ,784), [500,500]

转载 作者:太空狗 更新时间:2023-10-30 00:09:21 48 4
gpt4 key购买 nike

我是 tensorflow 的新手,正在学习 senddex 的教程。我不断收到错误 -

ValueError: Dimensions must be equal, but are 784 and 500 for 
'MatMul_1' (op: 'MatMul') with input shapes: [?,784], [500,500].

我认为导致问题的代码段是 -

l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']), 
hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)

l2 = tf.add(tf.matmul(data, hidden_2_layer['weights']),
hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)

l3 = tf.add(tf.matmul(data, hidden_3_layer['weights']),
hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)

output = tf.add(tf.matmul(l3, output_layer['weights']),
output_layer['biases'])

return output

虽然我是菜鸟而且可能是错的。我的整个代码是 -

mnist = input_data.read_data_sets("/tmp/ data/", one_hot=True)

n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500

n_classes = 10
batch_size = 100

x = tf.placeholder('float', [None, 784])
y = tf.placeholder('float')


def neural_network_model(data):
hidden_1_layer = {'weights': tf.Variable(tf.random_normal([784,
n_nodes_hl1])),
'biases':
tf.Variable(tf.random_normal([n_nodes_hl1]))}

hidden_2_layer = {'weights':
tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases':
tf.Variable(tf.random_normal([n_nodes_hl2]))}

hidden_3_layer = {'weights':
tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'biases':
tf.Variable(tf.random_normal([n_nodes_hl3]))}

output_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3,
n_classes])),
'biases': tf.Variable(tf.random_normal([n_classes]))}

l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']),
hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)

l2 = tf.add(tf.matmul(data, hidden_2_layer['weights']),
hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)

l3 = tf.add(tf.matmul(data, hidden_3_layer['weights']),
hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)

output = tf.add(tf.matmul(l3, output_layer['weights']),
output_layer['biases'])

return output


def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits
(logits=prediction, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)

hm_epochs = 10

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())

for epoch in range(hm_epochs):
epoch_loss = 0
for _ in range(int(mnist.train.num_examples / batch_size)):
epoch_x, epoch_y = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict={x: epoch_x,
y: epoch_y})
epoch_loss += c
print('Epoch', epoch, 'completed out of', hm_epochs, 'loss:',
epoch_loss)

correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy:', accuracy.eval({x: mnist.test.images, y:
mnist.test.labels}))


train_neural_network(x)

请帮忙。顺便说一句,我在 Mac 上的虚拟环境中运行 Python 3.6.1 和 Tensorflow 1.2。我正在使用 IDE Pycharm CE。如果任何信息有用。

最佳答案

问题是您引用的是 data 而不是 l1。而不是

l2 = tf.add(tf.matmul(data, hidden_2_layer['weights']), 
hidden_2_layer['biases'])

你的代码应该是这样的

l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']), 
hidden_2_layer['biases'])

l3 也是如此。而不是

l3 = tf.add(tf.matmul(data, hidden_3_layer['weights']), 
hidden_3_layer['biases'])

你应该有

l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']), 
hidden_3_layer['biases'])

下面的代码对我来说没有错误:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500

n_classes = 10
batch_size = 100

x = tf.placeholder('float', [None, 784])
y = tf.placeholder('float')

def print_shape(obj):
print(obj.get_shape().as_list())

def neural_network_model(data):
hidden_1_layer = {'weights': tf.Variable(tf.random_normal([784,
n_nodes_hl1])),
'biases':
tf.Variable(tf.random_normal([n_nodes_hl1]))}

hidden_2_layer = {'weights':
tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases':
tf.Variable(tf.random_normal([n_nodes_hl2]))}

hidden_3_layer = {'weights':
tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'biases':
tf.Variable(tf.random_normal([n_nodes_hl3]))}

output_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3,
n_classes])),
'biases': tf.Variable(tf.random_normal([n_classes]))}
print_shape(data)
l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']),
hidden_1_layer['biases'])
print_shape(l1)
l1 = tf.nn.relu(l1)
print_shape(l1)
l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']),
hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)

l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']),
hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)

output = tf.add(tf.matmul(l3, output_layer['weights']),
output_layer['biases'])

return output


def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits
(logits=prediction, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)

hm_epochs = 10

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())

for epoch in range(hm_epochs):
epoch_loss = 0
for _ in range(int(mnist.train.num_examples / batch_size)):
epoch_x, epoch_y = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict={x: epoch_x,
y: epoch_y})
epoch_loss += c
print('Epoch', epoch, 'completed out of', hm_epochs, 'loss:',
epoch_loss)

correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy:', accuracy.eval({x: mnist.test.images, y:
mnist.test.labels}))


train_neural_network(x)

关于python - ValueError : Dimensions must be equal, 但对于 'MatMul_1' 是 784 和 500 (op : 'MatMul' ) with input shapes: [? ,784), [500,500],我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44956460/

48 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com