gpt4 book ai didi

python - 在python中计算*多*组地理坐标之间的距离

转载 作者:太空狗 更新时间:2023-10-30 00:06:04 26 4
gpt4 key购买 nike

我正在努力计算 组纬度和经度坐标之间的距离。简而言之,我找到了许多使用数学或 geopy 的教程。当我只想找到一组坐标(或两个唯一位置)之间的距离时,这些教程非常有用。但是,我的目标是扫描具有 400k 起点和终点坐标组合的数据集。下面列出了我使用的代码示例,但当我的数组大于 1 条记录时,我似乎遇到了错误。任何有用的提示将不胜感激。谢谢。

# starting dataframe is df

lat1 = df.lat1.as_matrix()
long1 = df.long1.as_matrix()
lat2 = df.lat2.as_matrix()
long2 = df.df_long2.as_matrix()

from geopy.distance import vincenty
point1 = (lat1, long1)
point2 = (lat2, long2)
print(vincenty(point1, point2).miles)

最佳答案

编辑:here's a simple notebook example

一种通用方法,假设您有一个包含点的 DataFrame 列,并且您想要计算所有点之间的距离(如果您有单独的列,首先将它们组合成 (lon, lat) 元组,例如)。将新列命名为 coords .

import pandas as pd
import numpy as np
from geopy.distance import vincenty


# assumes your DataFrame is named df, and its lon and lat columns are named lon and lat. Adjust as needed.
df['coords'] = zip(df.lat, df.lon)
# first, let's create a square DataFrame (think of it as a matrix if you like)
square = pd.DataFrame(
np.zeros(len(df) ** 2).reshape(len(df), len(df)),
index=df.index, columns=df.index)

此函数从 df 中查找我们的“结束”坐标DataFrame 使用输入列名,然后应用 geopy vincenty()对输入列中的每一行执行函数,使用 square.coords列作为第一个参数。这是有效的,因为该函数从右到左按列应用。

def get_distance(col):
end = df.ix[col.name]['coords']
return df['coords'].apply(vincenty, args=(end,), ellipsoid='WGS-84')

现在我们已准备好计算所有距离。
我们正在转置 DataFrame ( .T ),因为 loc[]我们将用来检索距离的方法是指索引标签、行标签。但是,我们的内部应用函数(见上文)用检索到的值填充一列

distances = square.apply(get_distance, axis=1).T

你的 geopy值以公里为单位 (IIRC) 返回,因此您可能需要使用 .meters 将这些转换为您想要使用的任何单位, .miles等等

像下面这样的东西应该可以工作:

def units(input_instance):
return input_instance.meters

distances_meters = distances.applymap(units)

您现在可以使用例如索引到距离矩阵中loc[row_index, column_index] .你应该能够很容易地适应上面的内容。您可能需要调整 apply调用get_distance函数以确保您将正确的值传递给 great_circle . Pandas apply 文档可能很有用,特别是在使用 args 传递位置参数方面。 (你需要最新的 pandas 版本才能工作)。

此代码尚未分析,可能有更快的方法来执行此操作,但对于 400k 距离计算来说应该相当快。

哦还有

我不记得 geopy 是否期望坐标为 (lon, lat)(lat, lon) .我敢打赌是后者(叹气)。

更新这是截至 2021 年 5 月的工作脚本。

import geopy.distance
# geopy DOES use latlon configuration
df['latlon'] = list(zip(df['lat'], df['lon']))
square = pd.DataFrame(
np.zeros((df.shape[0], df.shape[0])),
index=df.index, columns=df.index
)

# replacing distance.vicenty with distance.distance
def get_distance(col):
end = df.loc[col.name, 'latlon']
return df['latlon'].apply(geopy.distance.distance,
args=(end,),
ellipsoid='WGS-84'
)

distances = square.apply(get_distance, axis=1).T

关于python - 在python中计算*多*组地理坐标之间的距离,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/36696613/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com