- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我的目标是要有一个时间列表(以秒为单位),已经在一整天的 5 分钟内打包在时间列表中。这是我将“2016-07-08”一整天打包 5 分钟的代码:
pd.date_range('2016-07-08 00:00:00', '2016-07-08 23:59:00', freq='5Min')
结果:
DatetimeIndex(['2016-07-08 00:00:00', '2016-07-08 00:05:00',
'2016-07-08 00:10:00', '2016-07-08 00:15:00',
'2016-07-08 00:20:00', '2016-07-08 00:25:00',
'2016-07-08 00:30:00', '2016-07-08 00:35:00',
'2016-07-08 00:40:00', '2016-07-08 00:45:00',
...
'2016-07-08 23:10:00', '2016-07-08 23:15:00',
'2016-07-08 23:20:00', '2016-07-08 23:25:00',
'2016-07-08 23:30:00', '2016-07-08 23:35:00',
'2016-07-08 23:40:00', '2016-07-08 23:45:00',
'2016-07-08 23:50:00', '2016-07-08 23:55:00'],
dtype='datetime64[ns]', length=288, freq='5T')
这是每 5 分钟包含所有时间(按秒)的代码:
for time in pd.date_range('2016-07-08 00:00:00', '2016-07-08 23:59:00', freq='5Min').tolist():
time_by_5_min = datetime.datetime.strftime(time.to_datetime(), "%Y-%m-%d %H:%M:%S")
print pd.date_range(time_by_5_min, freq='S', periods=60)
结果:
DatetimeIndex(['2016-07-08 00:00:00', '2016-07-08 00:00:01',
'2016-07-08 00:00:02', '2016-07-08 00:00:03',
'2016-07-08 00:00:04', '2016-07-08 00:00:05',
'2016-07-08 00:00:06', '2016-07-08 00:00:07',
'2016-07-08 00:00:08', '2016-07-08 00:00:09',
'2016-07-08 00:00:10', '2016-07-08 00:00:11',
'2016-07-08 00:00:12', '2016-07-08 00:00:13',
'2016-07-08 00:00:14', '2016-07-08 00:00:15',
'2016-07-08 00:00:16', '2016-07-08 00:00:17',
'2016-07-08 00:00:18', '2016-07-08 00:00:19',
'2016-07-08 00:00:20', '2016-07-08 00:00:21',
'2016-07-08 00:00:22', '2016-07-08 00:00:23',
'2016-07-08 00:00:24', '2016-07-08 00:00:25',
'2016-07-08 00:00:26', '2016-07-08 00:00:27',
'2016-07-08 00:00:28', '2016-07-08 00:00:29',
'2016-07-08 00:00:30', '2016-07-08 00:00:31',
'2016-07-08 00:00:32', '2016-07-08 00:00:33',
'2016-07-08 00:00:34', '2016-07-08 00:00:35',
'2016-07-08 00:00:36', '2016-07-08 00:00:37',
'2016-07-08 00:00:38', '2016-07-08 00:00:39',
'2016-07-08 00:00:40', '2016-07-08 00:00:41',
'2016-07-08 00:00:42', '2016-07-08 00:00:43',
'2016-07-08 00:00:44', '2016-07-08 00:00:45',
'2016-07-08 00:00:46', '2016-07-08 00:00:47',
'2016-07-08 00:00:48', '2016-07-08 00:00:49',
'2016-07-08 00:00:50', '2016-07-08 00:00:51',
'2016-07-08 00:00:52', '2016-07-08 00:00:53',
'2016-07-08 00:00:54', '2016-07-08 00:00:55',
'2016-07-08 00:00:56', '2016-07-08 00:00:57',
'2016-07-08 00:00:58', '2016-07-08 00:00:59'],
dtype='datetime64[ns]', freq='S')
DatetimeIndex(['2016-07-08 00:05:00', '2016-07-08 00:05:01',
'2016-07-08 00:05:02', '2016-07-08 00:05:03',
'2016-07-08 00:05:04', '2016-07-08 00:05:05',
'2016-07-08 00:05:06', '2016-07-08 00:05:07',
'2016-07-08 00:05:08', '2016-07-08 00:05:09',
'2016-07-08 00:05:10', '2016-07-08 00:05:11',
'2016-07-08 00:05:12', '2016-07-08 00:05:13',
'2016-07-08 00:05:14', '2016-07-08 00:05:15',
'2016-07-08 00:05:16', '2016-07-08 00:05:17',
'2016-07-08 00:05:18', '2016-07-08 00:05:19',
'2016-07-08 00:05:20', '2016-07-08 00:05:21',
'2016-07-08 00:05:22', '2016-07-08 00:05:23',
'2016-07-08 00:05:24', '2016-07-08 00:05:25',
'2016-07-08 00:05:26', '2016-07-08 00:05:27',
'2016-07-08 00:05:28', '2016-07-08 00:05:29',
'2016-07-08 00:05:30', '2016-07-08 00:05:31',
'2016-07-08 00:05:32', '2016-07-08 00:05:33',
'2016-07-08 00:05:34', '2016-07-08 00:05:35',
'2016-07-08 00:05:36', '2016-07-08 00:05:37',
'2016-07-08 00:05:38', '2016-07-08 00:05:39',
'2016-07-08 00:05:40', '2016-07-08 00:05:41',
'2016-07-08 00:05:42', '2016-07-08 00:05:43',
'2016-07-08 00:05:44', '2016-07-08 00:05:45',
'2016-07-08 00:05:46', '2016-07-08 00:05:47',
'2016-07-08 00:05:48', '2016-07-08 00:05:49',
'2016-07-08 00:05:50', '2016-07-08 00:05:51',
'2016-07-08 00:05:52', '2016-07-08 00:05:53',
'2016-07-08 00:05:54', '2016-07-08 00:05:55',
'2016-07-08 00:05:56', '2016-07-08 00:05:57',
'2016-07-08 00:05:58', '2016-07-08 00:05:59'],
dtype='datetime64[ns]', freq='S')
etc
这对我来说太完美了!我现在想要列表,而不是 pandas.tseries.index.DatetimeIndex ...tolist() 方法给出了这个:
for time in pd.date_range('2016-07-08 00:00:00', '2016-07-08 23:59:00', freq='5Min').tolist():
time_by_5_min = datetime.datetime.strftime(time.to_datetime(), "%Y-%m-%d %H:%M:%S")
print (pd.date_range(time_by_5_min, freq='S', periods=60)).tolist()
结果:
[Timestamp('2016-07-08 00:00:00', offset='S'), Timestamp('2016-07-08 00:00:01', offset='S'), Timestamp('2016-07-08 00:00:02', offset='S'), Timestamp('2016-07-08 00:00:03', offset='S'), Timestamp('2016-07-08 00:00:04', offset='S'), Timestamp('2016-07-08 00:00:05', offset='S'), Timestamp('2016-07-08 00:00:06', offset='S'), etc]
我想要这样的东西:
[['2016-07-08 00:00:00', '2016-07-08 00:00:01',
'2016-07-08 00:00:02', '2016-07-08 00:00:03',
'2016-07-08 00:00:04', '2016-07-08 00:00:05',
'2016-07-08 00:00:06', '2016-07-08 00:00:07',
'2016-07-08 00:00:08', '2016-07-08 00:00:09',
'2016-07-08 00:00:10', '2016-07-08 00:00:11',
'2016-07-08 00:00:12', '2016-07-08 00:00:13',
'2016-07-08 00:00:14', '2016-07-08 00:00:15',
'2016-07-08 00:00:16', '2016-07-08 00:00:17',
'2016-07-08 00:00:18', '2016-07-08 00:00:19',
'2016-07-08 00:00:20', '2016-07-08 00:00:21',
'2016-07-08 00:00:22', '2016-07-08 00:00:23',
'2016-07-08 00:00:24', '2016-07-08 00:00:25',
'2016-07-08 00:00:26', '2016-07-08 00:00:27',
'2016-07-08 00:00:28', '2016-07-08 00:00:29',
'2016-07-08 00:00:30', '2016-07-08 00:00:31',
'2016-07-08 00:00:32', '2016-07-08 00:00:33',
'2016-07-08 00:00:34', '2016-07-08 00:00:35',
'2016-07-08 00:00:36', '2016-07-08 00:00:37',
'2016-07-08 00:00:38', '2016-07-08 00:00:39',
'2016-07-08 00:00:40', '2016-07-08 00:00:41',
'2016-07-08 00:00:42', '2016-07-08 00:00:43',
'2016-07-08 00:00:44', '2016-07-08 00:00:45',
'2016-07-08 00:00:46', '2016-07-08 00:00:47',
'2016-07-08 00:00:48', '2016-07-08 00:00:49',
'2016-07-08 00:00:50', '2016-07-08 00:00:51',
'2016-07-08 00:00:52', '2016-07-08 00:00:53',
'2016-07-08 00:00:54', '2016-07-08 00:00:55',
'2016-07-08 00:00:56', '2016-07-08 00:00:57',
'2016-07-08 00:00:58', '2016-07-08 00:00:59'],
['2016-07-08 00:05:00', '2016-07-08 00:05:01',
'2016-07-08 00:05:02', '2016-07-08 00:05:03',
'2016-07-08 00:05:04', '2016-07-08 00:05:05',
'2016-07-08 00:05:06', '2016-07-08 00:05:07',
'2016-07-08 00:05:08', '2016-07-08 00:05:09',
'2016-07-08 00:05:10', '2016-07-08 00:05:11',
'2016-07-08 00:05:12', '2016-07-08 00:05:13',
'2016-07-08 00:05:14', '2016-07-08 00:05:15',
'2016-07-08 00:05:16', '2016-07-08 00:05:17',
'2016-07-08 00:05:18', '2016-07-08 00:05:19',
'2016-07-08 00:05:20', '2016-07-08 00:05:21',
'2016-07-08 00:05:22', '2016-07-08 00:05:23',
'2016-07-08 00:05:24', '2016-07-08 00:05:25',
'2016-07-08 00:05:26', '2016-07-08 00:05:27',
'2016-07-08 00:05:28', '2016-07-08 00:05:29',
'2016-07-08 00:05:30', '2016-07-08 00:05:31',
'2016-07-08 00:05:32', '2016-07-08 00:05:33',
'2016-07-08 00:05:34', '2016-07-08 00:05:35',
'2016-07-08 00:05:36', '2016-07-08 00:05:37',
'2016-07-08 00:05:38', '2016-07-08 00:05:39',
'2016-07-08 00:05:40', '2016-07-08 00:05:41',
'2016-07-08 00:05:42', '2016-07-08 00:05:43',
'2016-07-08 00:05:44', '2016-07-08 00:05:45',
'2016-07-08 00:05:46', '2016-07-08 00:05:47',
'2016-07-08 00:05:48', '2016-07-08 00:05:49',
'2016-07-08 00:05:50', '2016-07-08 00:05:51',
'2016-07-08 00:05:52', '2016-07-08 00:05:53',
'2016-07-08 00:05:54', '2016-07-08 00:05:55',
'2016-07-08 00:05:56', '2016-07-08 00:05:57',
'2016-07-08 00:05:58', '2016-07-08 00:05:59'], etc]
有什么想法吗?
最佳答案
我想你可以使用 DatetimeIndex.strftime
:
我尝试删除一些代码(在示例中不是必需的,也许在真实代码中很重要)
for time in pd.date_range('2016-07-08 00:00:00', '2016-07-08 23:59:00', freq='5Min'):
print (pd.date_range(time, freq='S', periods=60).strftime("%Y-%m-%d %H:%M:%S").tolist())
['2016-07-08 00:00:00', '2016-07-08 00:00:01', '2016-07-08 00:00:02', '2016-07-08 00:00:03', '2016-07-08 00:00:04', '2016-07-08 00:00:05', '2016-07-08 00:00:06', '2016-07-08 00:00:07', '2016-07-08 00:00:08', '2016-07-08 00:00:09', '2016-07-08 00:00:10', '2016-07-08 00:00:11', '2016-07-08 00:00:12', '2016-07-08 00:00:13', '2016-07-08 00:00:14', '2016-07-08 00:00:15', '2016-07-08 00:00:16', '2016-07-08 00:00:17', '2016-07-08 00:00:18', '2016-07-08 00:00:19', '2016-07-08 00:00:20', '2016-07-08 00:00:21', '2016-07-08 00:00:22', '2016-07-08 00:00:23', '2016-07-08 00:00:24', '2016-07-08 00:00:25', '2016-07-08 00:00:26', '2016-07-08 00:00:27', '2016-07-08 00:00:28', '2016-07-08 00:00:29', '2016-07-08 00:00:30', '2016-07-08 00:00:31', '2016-07-08 00:00:32', '2016-07-08 00:00:33', '2016-07-08 00:00:34', '2016-07-08 00:00:35', '2016-07-08 00:00:36', '2016-07-08 00:00:37', '2016-07-08 00:00:38', '2016-07-08 00:00:39', '2016-07-08 00:00:40', '2016-07-08 00:00:41', '2016-07-08 00:00:42', '2016-07-08 00:00:43', '2016-07-08 00:00:44', '2016-07-08 00:00:45', '2016-07-08 00:00:46', '2016-07-08 00:00:47', '2016-07-08 00:00:48', '2016-07-08 00:00:49', '2016-07-08 00:00:50', '2016-07-08 00:00:51', '2016-07-08 00:00:52', '2016-07-08 00:00:53', '2016-07-08 00:00:54', '2016-07-08 00:00:55', '2016-07-08 00:00:56', '2016-07-08 00:00:57', '2016-07-08 00:00:58', '2016-07-08 00:00:59']
['2016-07-08 00:05:00', '2016-07-08 00:05:01', '2016-07-08 00:05:02', '2016-07-08 00:05:03', '2016-07-08 00:05:04', '2016-07-08 00:05:05', '2016-07-08 00:05:06', '2016-07-08 00:05:07', '2016-07-08 00:05:08', '2016-07-08 00:05:09', '2016-07-08 00:05:10', '2016-07-08 00:05:11', '2016-07-08 00:05:12', '2016-07-08 00:05:13', '2016-07-08 00:05:14', '2016-07-08 00:05:15', '2016-07-08 00:05:16', '2016-07-08 00:05:17', '2016-07-08 00:05:18', '2016-07-08 00:05:19', '2016-07-08 00:05:20', '2016-07-08 00:05:21', '2016-07-08 00:05:22', '2016-07-08 00:05:23', '2016-07-08 00:05:24', '2016-07-08 00:05:25', '2016-07-08 00:05:26', '2016-07-08 00:05:27', '2016-07-08 00:05:28', '2016-07-08 00:05:29', '2016-07-08 00:05:30', '2016-07-08 00:05:31', '2016-07-08 00:05:32', '2016-07-08 00:05:33', '2016-07-08 00:05:34', '2016-07-08 00:05:35', '2016-07-08 00:05:36', '2016-07-08 00:05:37', '2016-07-08 00:05:38', '2016-07-08 00:05:39', '2016-07-08 00:05:40', '2016-07-08 00:05:41', '2016-07-08 00:05:42', '2016-07-08 00:05:43', '2016-07-08 00:05:44', '2016-07-08 00:05:45', '2016-07-08 00:05:46', '2016-07-08 00:05:47', '2016-07-08 00:05:48', '2016-07-08 00:05:49', '2016-07-08 00:05:50', '2016-07-08 00:05:51', '2016-07-08 00:05:52', '2016-07-08 00:05:53', '2016-07-08 00:05:54', '2016-07-08 00:05:55', '2016-07-08 00:05:56', '2016-07-08 00:05:57', '2016-07-08 00:05:58', '2016-07-08 00:05:59']
...
...
如果需要输出为嵌套的列表
append
数据循环到L
:
import pandas as pd
L = []
for time in pd.date_range('2016-07-08 00:00:00', '2016-07-08 23:59:00', freq='5Min'):
print (pd.date_range(time, freq='S', periods=60).strftime("%Y-%m-%d %H:%M:%S").tolist())
L.append(pd.date_range(time, freq='S', periods=60).strftime("%Y-%m-%d %H:%M:%S").tolist())
print (L)
[['2016-07-08 00:00:00', '2016-07-08 00:00:01', '2016-07-08 00:00:02', '2016-07-08 00:00:03', '2016-07-08 00:00:04', '2016-07-08 00:00:05', '2016-07-08 00:00:06', '2016-07-08 00:00:07', '2016-07-08 00:00:08', '2016-07-08 00:00:09', '2016-07-08 00:00:10', '2016-07-08 00:00:11', '2016-07-08 00:00:12', '2016-07-08 00:00:13', '2016-07-08 00:00:14', '2016-07-08 00:00:15', '2016-07-08 00:00:16', '2016-07-08 00:00:17', '2016-07-08 00:00:18', '2016-07-08 00:00:19', '2016-07-08 00:00:20', '2016-07-08 00:00:21', '2016-07-08 00:00:22', '2016-07-08 00:00:23', '2016-07-08 00:00:24', '2016-07-08 00:00:25', '2016-07-08 00:00:26', '2016-07-08 00:00:27', '2016-07-08 00:00:28', '2016-07-08 00:00:29', '2016-07-08 00:00:30', '2016-07-08 00:00:31', '2016-07-08 00:00:32', '2016-07-08 00:00:33', '2016-07-08 00:00:34', '2016-07-08 00:00:35', '2016-07-08 00:00:36', '2016-07-08 00:00:37', '2016-07-08 00:00:38', '2016-07-08 00:00:39', '2016-07-08 00:00:40', '2016-07-08 00:00:41', '2016-07-08 00:00:42', '2016-07-08 00:00:43', '2016-07-08 00:00:44', '2016-07-08 00:00:45', '2016-07-08 00:00:46', '2016-07-08 00:00:47', '2016-07-08 00:00:48', '2016-07-08 00:00:49', '2016-07-08 00:00:50', '2016-07-08 00:00:51', '2016-07-08 00:00:52', '2016-07-08 00:00:53', '2016-07-08 00:00:54', '2016-07-08 00:00:55', '2016-07-08 00:00:56', '2016-07-08 00:00:57', '2016-07-08 00:00:58', '2016-07-08 00:00:59'], ['2016-07-08 00:05:00', '2016-07-08 00:05:01', '2016-07-08 00:05:02', '2016-07-08 00:05:03', '2016-07-08 00:05:04', '2016-07-08 00:05:05', '2016-07-08 00:05:06', '2016-07-08 00:05:07', '2016-07-08 00:05:08', '2016-07-08 00:05:09', '2016-07-08 00:05:10', '2016-07-08 00:05:11', '2016-07-08 00:05:12', '2016-07-08 00:05:13', '2016-07-08 00:05:14', '2016-07-08 00:05:15', '2016-07-08 00:05:16', '2016-07-08 00:05:17', '2016-07-08 00:05:18', '2016-07-08 00:05:19', '2016-07-08 00:05:20', '2016-07-08 00:05:21', '2016-07-08 00:05:22', '2016-07-08 00:05:23', '2016-07-08 00:05:24', '2016-07-08 00:05:25', '2016-07-08 00:05:26', '2016-07-08 00:05:27', '2016-07-08 00:05:28', '2016-07-08 00:05:29', '2016-07-08 00:05:30', '2016-07-08 00:05:31', '2016-07-08 00:05:32', '2016-07-08 00:05:33', '2016-07-08 00:05:34', '2016-07-08 00:05:35', '2016-07-08 00:05:36', '2016-07-08 00:05:37', '2016-07-08 00:05:38', '2016-07-08 00:05:39', '2016-07-08 00:05:40', '2016-07-08 00:05:41', '2016-07-08 00:05:42', '2016-07-08 00:05:43', '2016-07-08 00:05:44', '2016-07-08 00:05:45', '2016-07-08 00:05:46', '2016-07-08 00:05:47', '2016-07-08...
关于python - 从 DatetimeIndex 到时间列表,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39597553/
您好,我是使用 xampp 的 PHPmyadmin 新手,没有 MYSQL 背景。当我喜欢研究它是如何工作的时,我的脑海中浮现出一个想法,它让我一周都无法休眠,因为我似乎无法弄清楚如何使用 MIN(
Go docs say (强调): Programs using times should typically store and pass them as values, not pointers.
我有一组用户在 8 月 1 日有一个条目。我想找到在 8 月 1 日有条目但在 8 月 2 日没有做任何事情的用户。 现在是 10 月,所以事件已经过去很久了。 我有限的知识说: SELECT * F
我有以下代码,主要编码和取消编码时间结构。这是代码 package main import ( "fmt" "time" "encoding/json" ) type chec
您能详细解释一下“用户 CPU 时间”和“系统 CPU 时间”吗?我读了很多,但我不太理解。 最佳答案 区别在于时间花在用户空间还是内核空间。用户 CPU 时间是处理器运行程序代码(或库中的代码)所花
应用程序不计算东西,但做输入/输出、读取文件、使用网络。我希望探查器显示它。 我希望像 callgrind 中的东西一样,在每个问题中调用 clock_gettime。 或者像 oprofile 那样
目前我的 web 应用程序接收 websocket 数据来触发操作。 这会在页面重新加载时中断,因此我需要一个能够触发特定事件的客户端解决方案。 这个想法可行吗? 假设你有 TimeX = curre
很难说出这里问的是什么。这个问题是含糊的、模糊的、不完整的、过于宽泛的或修辞性的,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开它,visit the help center 。 已关
我有一个 Instant (org.joda.time.Instant) 的实例,我在一些 api 响应中得到它。我有另一个来自 (java.time.Instant) 的实例,这是我从其他调用中获得
如何集成功能 f(y) w.r.t 时间;即 'y'是一个包含 3000 个值和值 time(t) 的数组从 1 到 3000 不等。所以,在整合 f(y) 后我需要 3000 个值. 积分将是不确定
可以通过 CLI 创建命名空间,但是如何使用 Java SDK 来创建命名空间? 最佳答案 它以编程方式通过 gRPC API 完成由服务公开。 在 Java 中,生成的 gRPC 客户端可以通过 W
我有一个函数,它接受 2 组日期(开始日期和结束日期),这些日期将用于我的匹配引擎 我必须知道start_date1和end_date1是否在start_date2和end_date2内 快进:当我在
我想从 Python 脚本运行“time”unix 命令,以计算非 Python 应用程序的执行时间。我会使用 os.system 方法。有什么方法可以在Python中保存这个输出吗?我的目标是多次运
我正在寻找一种“漂亮的数字”算法来确定日期/时间值轴上的标签。我熟悉 Paul Heckbert's Nice Numbers algorithm . 我有一个在 X 轴上显示时间/日期的图,用户可以
在 PowerShell 中,您可以格式化日期以返回当前小时,如下所示: Get-Date -UFormat %H 您可以像这样在 UTC 中获取日期字符串: $dateNow = Get-Date
我正在尝试使用 Javascript 向父子窗口添加一些页面加载检查功能。 我的目标是“从父窗口”检测,每次子窗口完全加载然后执行一些代码。 我在父窗口中使用以下代码示例: childPage=wi
我正在尝试设置此 FFmpeg 命令的 drawtext 何时开始,我尝试使用 start_number 但看起来它不会成功。 ffmpeg -i 1.mp4 -acodec aac -keyint_
我收到了一个 Excel (2010) 电子表格,它基本上是一个文本转储。 单元格 - J8 具有以下信息 2014 年 2 月 4 日星期二 00:08:06 EST 单元格 - L8 具有以下信息
我收到的原始数据包含一列具有以下日期和时间戳格式的数据: 2014 年 3 月 31 日凌晨 3:38 单元格的格式并不一致,因为有些单元格有单个空格,而另一些单元格中有两个或三个字符之间的空格。所以
我想知道是否有办法在我的 Grails 应用程序顶部显示版本和构建日期。 编辑:我应该说我正在寻找构建应用程序的日期/时间。 最佳答案 在您的主模板中,或任何地方。 Server version:
我是一名优秀的程序员,十分优秀!