- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我想将一堆大型 pandas 数据帧(大约百万行和 50 列)索引到 Elasticsearch 中。
在查找有关如何执行此操作的示例时,大多数人会使用 elasticsearch-py's bulk helper method , 传递给它一个实例 of the Elasticsearch class它处理连接以及创建的字典列表with pandas' dataframe.to_dict(orient='records') method .元数据可以作为新列预先插入到数据框中,例如df['_index'] = 'my_index'
等
但是,我有理由不使用 elasticsearch-py 库,想和 Elasticsearch bulk API 谈谈直接,例如通过requests或者其他方便的 HTTP 库。此外,df.to_dict()
在大型数据帧上非常慢,不幸的是,将数据帧转换为字典列表,然后通过 elasticsearch-py 序列化为 JSON 听起来像是不必要的开销喜欢dataframe.to_json()即使在大型数据帧上也非常快。
将 pandas 数据框转换为批量 API 所需格式的简单快捷方法是什么?我认为朝正确方向迈出的一步是使用 dataframe.to_json()
如下:
import pandas as pd
df = pd.DataFrame.from_records([{'a': 1, 'b': 2}, {'a': 3, 'b': 4}, {'a': 5, 'b': 6}])
df
a b
0 1 2
1 3 4
2 5 6
df.to_json(orient='records', lines=True)
'{"a":1,"b":2}\n{"a":3,"b":4}\n{"a":5,"b":6}'
现在这是一个换行符分隔的 JSON 字符串,但是,它仍然缺少元数据。将其放入其中的表演方式是什么?
编辑:为了完整起见,元数据 JSON 文档看起来像这样:
{"index": {"_index": "my_index", "_type": "my_type"}}
因此,最终批量 API 期望的整个 JSON 看起来像这(在最后一行之后有一个额外的换行符):
{"index": {"_index": "my_index", "_type": "my_type"}}
{"a":1,"b":2}
{"index": {"_index": "my_index", "_type": "my_type"}}
{"a":3,"b":4}
{"index": {"_index": "my_index", "_type": "my_type"}}
{"a":5,"b":6}
最佳答案
与此同时,我发现了多种可能性,如何以至少合理的速度做到这一点:
import json
import pandas as pd
import requests
# df is a dataframe or dataframe chunk coming from your reading logic
df['_id'] = df['column_1'] + '_' + df['column_2'] # or whatever makes your _id
df_as_json = df.to_json(orient='records', lines=True)
final_json_string = ''
for json_document in df_as_json.split('\n'):
jdict = json.loads(json_document)
metadata = json.dumps({'index': {'_id': jdict['_id']}})
jdict.pop('_id')
final_json_string += metadata + '\n' + json.dumps(jdict) + '\n'
headers = {'Content-type': 'application/json', 'Accept': 'text/plain'}
r = requests.post('http://elasticsearch.host:9200/my_index/my_type/_bulk', data=final_json_string, headers=headers, timeout=60)
除了使用 pandas 的 to_json()
方法,还可以使用 to_dict()
方法,如下所示。这在我的测试中稍慢但并不多:
dicts = df.to_dict(orient='records')
final_json_string = ''
for document in dicts:
metadata = {"index": {"_id": document["_id"]}}
document.pop('_id')
final_json_string += json.dumps(metadata) + '\n' + json.dumps(document) + '\n'
在大型数据集上运行时,可以通过将 Python 的默认 json
库替换为 ujson 来节省几分钟时间。或 rapidjson通过安装它,然后分别import ujson as json
或import rapidjson as json
。
通过将步骤的顺序执行替换为并行执行,可以实现更大的加速,这样在请求等待 Elasticsearch 处理所有文档并返回响应时读取和转换不会停止。这可以通过线程、多处理、Asyncio、任务队列等来完成,但这超出了这个问题的范围。
如果您碰巧找到一种更快地进行到 json 转换的方法,请告诉我。
关于python - 在没有 elasticsearch-py 的情况下将 pandas 数据框索引到 Elasticsearch,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41440791/
我在这里有一个问题,我不知道这是否正常。 但是我认为这里有些湖,安装插件elasticsearch-head之后,我在浏览器中启动url“http://localhost:9200/_plugin/h
我写了这个 flex 搜索查询: es.search(index=['ind1'],doc_type=['doc']) 我得到以下结果: {'_shards': {'failed': 0, 'skip
在ElasticSearch.Net v.5中,存在一个属性 Elasticsearch.Net.RequestData.Path ,该属性在ElasticSearch.Net v.6中已成为depr
如何让 elasticsearch 应用新配置?我更改了文件 ~ES_HOME/config/elasticsearch.yml 中的一个字符串: # Disable HTTP completely:
我正在尝试使用以下分析器在 elastic serach 7.1 中实现部分子字符串搜索 PUT my_index-001 { "settings": { "analysis": {
假设一个 elasticsearch 服务器在很短的时间内接收到 100 个任务。有些任务很短,有些任务很耗时,有些任务是删除任务,有些是插入和搜索查询。 elasticsearch 是如何决定先运行
我需要根据日期过滤一组值(在此处添加字段),然后按 device_id 对其进行分组。所以我正在使用以下东西: { "aggs":{ "dates_between":{ "fi
我在 Elasticsearch 中有一个企业索引。索引中的每个文档代表一个业务,每个业务都有business_hours。我试图允许使用星期几和时间过滤营业时间。例如,我们希望能够进行过滤,以显示我
我有一个这样的过滤查询 query: { filtered: { query: { bool: { should: [{multi_match: {
Elasticsearch 相当新,所以可能不得不忍受我,我遇到了一个问题,如果我使用 20 个字符或更少的字符搜索文档,文档会出现,但是查询中同一个单词中的任何更多字符,我没有结果: 使用“苯氧甲基
我试图更好地理解 ElasticSearch 的内部结构,所以我想知道 ElasticSearch 在内部计算以下两种情况的术语统计信息的方式是否存在任何差异。 第一种情况是当我有这样的文件时: {
在我的 elasticsearch 索引中,我索引了一堆工作。为简单起见,我们只说它们是一堆职位。当人们在我的搜索引擎中输入职位时,我想“自动完成”可能的匹配。 我在这里调查了完成建议:http://
我在很多映射中使用多字段。在 Elastic Search 的文档中,指示应将多字段替换为“fields”参数。参见 http://www.elasticsearch.org/guide/en/ela
我有如下查询, query = { "query": {"query_string": {"query": "%s" % q}}, "filter":{"ids
我有一个Json数据 "hits": [ { "_index": "outboxprov1", "_type": "deleted-c
这可能是一个初学者的问题,但我对大小有一些疑问。 根据 Elasticsearch 规范,大小的最大值可以是 10000,我想在下面验证我的理解: 示例查询: GET testindex-2016.0
我在 Elastic Search 中发现了滚动功能,这看起来非常有趣。看了那么多文档,下面的问题我还是不清楚。 如果偏移量已经存在那么为什么要使用滚动? 即将到来的记录呢?假设它完成了所有数据的滚动
我有以下基于注释的 Elasticsearch 配置,我已将索引设置为不被分析,因为我不希望这些字段被标记化: @Document(indexName = "abc", type = "efg
我正在尝试在单个索引中创建多个类型。例如,我试图在host索引中创建两种类型(post,ytb),以便在它们之间创建父子关系。 PUT /ytb { "mappings": { "po
我尝试创建一个简单的模板,包括一些动态模板,但我似乎无法为文档编制索引。 我得到错误: 400 {"error":"MapperParsingException[mapping [_default_]
我是一名优秀的程序员,十分优秀!