- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在使用 itertools.combinations()
如下:
import itertools
import numpy as np
L = [1,2,3,4,5]
N = 3
output = np.array([a for a in itertools.combinations(L,N)]).T
这会产生我需要的输出:
array([[1, 1, 1, 1, 1, 1, 2, 2, 2, 3],
[2, 2, 2, 3, 3, 4, 3, 3, 4, 4],
[3, 4, 5, 4, 5, 5, 4, 5, 5, 5]])
我在多处理环境中重复和过度地使用这个表达式,我需要它尽可能快。
来自 this post我知道基于 itertools
的代码不是最快的解决方案,使用 numpy
可能是一种改进,但是我在 numpy
方面还不够好> 优化技巧,以理解和调整那里编写的迭代代码或提出我自己的优化。
如有任何帮助,我们将不胜感激。
编辑:
L
来自 pandas dataframe,所以它也可以看作是一个 numpy 数组:
L = df.L.values
最佳答案
这是一个比 itertools UPDATE 稍微快一点的:还有一个 (nump2
) 实际上要快很多:
import numpy as np
import itertools
import timeit
def nump(n, k, i=0):
if k == 1:
a = np.arange(i, i+n)
return tuple([a[None, j:] for j in range(n)])
template = nump(n-1, k-1, i+1)
full = np.r_[np.repeat(np.arange(i, i+n-k+1),
[t.shape[1] for t in template])[None, :],
np.c_[template]]
return tuple([full[:, j:] for j in np.r_[0, np.add.accumulate(
[t.shape[1] for t in template[:-1]])]])
def nump2(n, k):
a = np.ones((k, n-k+1), dtype=int)
a[0] = np.arange(n-k+1)
for j in range(1, k):
reps = (n-k+j) - a[j-1]
a = np.repeat(a, reps, axis=1)
ind = np.add.accumulate(reps)
a[j, ind[:-1]] = 1-reps[1:]
a[j, 0] = j
a[j] = np.add.accumulate(a[j])
return a
def itto(L, N):
return np.array([a for a in itertools.combinations(L,N)]).T
k = 6
n = 12
N = np.arange(n)
assert np.all(nump2(n,k) == itto(N,k))
print('numpy ', timeit.timeit('f(a,b)', number=100, globals={'f':nump, 'a':n, 'b':k}))
print('numpy 2 ', timeit.timeit('f(a,b)', number=100, globals={'f':nump2, 'a':n, 'b':k}))
print('itertools', timeit.timeit('f(a,b)', number=100, globals={'f':itto, 'a':N, 'b':k}))
时间:
k = 3, n = 50
numpy 0.06967267207801342
numpy 2 0.035096961073577404
itertools 0.7981023890897632
k = 3, n = 10
numpy 0.015058324905112386
numpy 2 0.0017436158377677202
itertools 0.004743851954117417
k = 6, n = 12
numpy 0.03546895203180611
numpy 2 0.00997065706178546
itertools 0.05292179994285107
关于python - 更快的 numpy 解决方案而不是 itertools.combinations?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42138681/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!