gpt4 book ai didi

python - fft 除法用于快速多项式除法

转载 作者:太空狗 更新时间:2023-10-30 00:05:16 26 4
gpt4 key购买 nike

我正在尝试使用快速傅立叶变换 (fft) 实现快速多项式除法。

这是我目前得到的:

from numpy.fft import fft, ifft
def fft_div(C1, C2):
# fft expects right-most for significant coefficients
C1 = C1[::-1]
C2 = C2[::-1]
d = len(C1)+len(C2)-1
c1 = fft(list(C1) + [0] * (d-len(C1)))
c2 = fft(list(C2) + [0] * (d-len(C2)))
res = list(ifft(c1-c2)[:d].real)
# Reorder back to left-most and round to integer
return [int(round(x)) for x in res[::-1]]

这适用于相同长度的多项式,但如果长度不同则结果是错误的(我以 RosettaCode's extended_synthetic_division() 函数为基准):

# Most signficant coefficient is left
N = [1, -11, 0, -22, 1]
D = [1, -3, 0, 1, 2]
# OK case, same length for both polynomials
fft_div(N, D)
>> [0, 0, 0, 0, 0, -8, 0, -23, -1]
extended_synthetic_division(N, D)
>> ([1], [-8, 0, -23, -1])

# NOT OK case, D is longer than N (also happens if shorter)
D = [1, -3, 0, 1, 2, 20]
fft_div(N, D)
>> [0, 0, 0, 0, -1, 4, -11, -1, -24, -19]
extended_synthetic_division(N, D)
>> ([], [1, -11, 0, -22, 1])

奇怪的是,看起来很接近,但还是有点偏离。我做错什么了?换句话说:如何将快速多项式除法(使用 FFT)推广到不同大小的向量

如果你能告诉我如何计算除法(目前我只有余数),还有奖励。

最佳答案

这是在这些 lecture notes 中找到的快速多项式除法算法的直接实现。 .

除法基于被除数与除数倒数的快速/FFT 乘法。我下面的实现严格遵循被证明具有 O(n*log(n)) 时间复杂度的算法(对于具有相同数量级的次数的多项式),但它的编写重点是可读性,而不是效率。

from math import ceil, log
from numpy.fft import fft, ifft

def poly_deg(p):
return len(p) - 1


def poly_scale(p, n):
"""Multiply polynomial ``p(x)`` with ``x^n``.
If n is negative, poly ``p(x)`` is divided with ``x^n``, and remainder is
discarded (truncated division).
"""
if n >= 0:
return list(p) + [0] * n
else:
return list(p)[:n]


def poly_scalar_mul(a, p):
"""Multiply polynomial ``p(x)`` with scalar (constant) ``a``."""
return [a*pi for pi in p]


def poly_extend(p, d):
"""Extend list ``p`` representing a polynomial ``p(x)`` to
match polynomials of degree ``d-1``.
"""
return [0] * (d-len(p)) + list(p)


def poly_norm(p):
"""Normalize the polynomial ``p(x)`` to have a non-zero most significant
coefficient.
"""
for i,a in enumerate(p):
if a != 0:
return p[i:]
return []


def poly_add(u, v):
"""Add polynomials ``u(x)`` and ``v(x)``."""
d = max(len(u), len(v))
return [a+b for a,b in zip(poly_extend(u, d), poly_extend(v, d))]


def poly_sub(u, v):
"""Subtract polynomials ``u(x)`` and ``v(x)``."""
d = max(len(u), len(v))
return poly_norm([a-b for a,b in zip(poly_extend(u, d), poly_extend(v, d))])


def poly_mul(u, v):
"""Multiply polynomials ``u(x)`` and ``v(x)`` with FFT."""
if not u or not v:
return []
d = poly_deg(u) + poly_deg(v) + 1
U = fft(poly_extend(u, d)[::-1])
V = fft(poly_extend(v, d)[::-1])
res = list(ifft(U*V).real)
return [int(round(x)) for x in res[::-1]]


def poly_recip(p):
"""Calculate the reciprocal of polynomial ``p(x)`` with degree ``k-1``,
defined as: ``x^(2k-2) / p(x)``, where ``k`` is a power of 2.
"""
k = poly_deg(p) + 1
assert k>0 and p[0] != 0 and 2**round(log(k,2)) == k

if k == 1:
return [1 / p[0]]

q = poly_recip(p[:k/2])
r = poly_sub(poly_scale(poly_scalar_mul(2, q), 3*k/2-2),
poly_mul(poly_mul(q, q), p))

return poly_scale(r, -k+2)


def poly_divmod(u, v):
"""Fast polynomial division ``u(x)`` / ``v(x)`` of polynomials with degrees
m and n. Time complexity is ``O(n*log(n))`` if ``m`` is of the same order
as ``n``.
"""
if not u or not v:
return []
m = poly_deg(u)
n = poly_deg(v)

# ensure deg(v) is one less than some power of 2
# by extending v -> ve, u -> ue (mult by x^nd)
nd = int(2**ceil(log(n+1, 2))) - 1 - n
ue = poly_scale(u, nd)
ve = poly_scale(v, nd)
me = m + nd
ne = n + nd

s = poly_recip(ve)
q = poly_scale(poly_mul(ue, s), -2*ne)

# handle the case when m>2n
if me > 2*ne:
# t = x^2n - s*v
t = poly_sub(poly_scale([1], 2*ne), poly_mul(s, ve))
q2, r2 = poly_divmod(poly_scale(poly_mul(ue, t), -2*ne), ve)
q = poly_add(q, q2)

# remainder, r = u - v*q
r = poly_sub(u, poly_mul(v, q))

return q, r

poly_divmod(u, v) 函数返回多项式 uv(quotient, remainder) 元组code>(就像 Python 的标准 divmod 用于数字)。

例如:

>>> print poly_divmod([1,0,-1], [1,-1])
([1, 1], [])
>>> print poly_divmod([3,-5,10,8], [1,2,-3])
([3, -11], [41, -25])
>>> print poly_divmod([1, -11, 0, -22, 1], [1, -3, 0, 1, 2])
([1], [-8, 0, -23, -1])
>>> print poly_divmod([1, -11, 0, -22, 1], [1, -3, 0, 1, 2, 20])
([], [1, -11, 0, -22, 1])

即:

  • (x^2 - 1)/(x - 1) == x + 1
  • (2x^3 - 5x^2 + 10x + 8)/(x^2 + 2x -3) == 3x - 11,余数41x - 25
  • 等(最后两个例子是你的。)

关于python - fft 除法用于快速多项式除法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44770632/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com