- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我目前正在计划我的第一个 Conv。 NN 在 Tensorflow 中的实现,并阅读了 Tensorflow 上的许多教程 website洞察力。
看起来基本上有两种创建自定义 CNN 的方法:
1) 使用 Tensorflow 层模块 tf.layers
,这是“高级 API”。使用此方法,您可以定义一个由 tf.layers
对象组成的模型定义函数,并在主函数中实例化一个 tf.learn.Estimator
,传递模型定义函数给它。从这里开始,可以在 Estimator
对象上调用 fit()
和 evaluate()
方法,分别进行训练和验证。链接:https://www.tensorflow.org/tutorials/layers .主要功能如下:
def main(unused_argv):
# Load training and eval data
mnist = learn.datasets.load_dataset("mnist")
train_data = mnist.train.images # Returns np.array
train_labels = np.asarray(mnist.train.labels, dtype=np.int32)
eval_data = mnist.test.images # Returns np.array
eval_labels = np.asarray(mnist.test.labels, dtype=np.int32)
# Create the Estimator
mnist_classifier = learn.Estimator(
model_fn=cnn_model_fn, model_dir="/tmp/mnist_convnet_model")
# Set up logging for predictions
# Log the values in the "Softmax" tensor with label "probabilities"
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=50)
# Train the model
mnist_classifier.fit(
x=train_data,
y=train_labels,
batch_size=100,
steps=20000,
monitors=[logging_hook])
# Configure the accuracy metric for evaluation
metrics = {
"accuracy":
learn.MetricSpec(
metric_fn=tf.metrics.accuracy, prediction_key="classes"),
}
# Evaluate the model and print results
eval_results = mnist_classifier.evaluate(
x=eval_data, y=eval_labels, metrics=metrics)
print(eval_results)
完整代码 here
2) 使用 Tensorflow 的“低级 API”,其中层在定义函数中定义。在这里,图层是手动定义的,用户必须手动执行许多计算。在 main 函数中,用户启动一个 tf.Session()
,并使用 for 循环手动配置训练/验证。链接:https://www.tensorflow.org/get_started/mnist/pros .主要功能如下:
def main(_):
# Import data
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
# Build the graph for the deep net
y_conv, keep_prob = deepnn(x)
with tf.name_scope('loss'):
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_,
logits=y_conv)
cross_entropy = tf.reduce_mean(cross_entropy)
with tf.name_scope('adam_optimizer'):
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
correct_prediction = tf.cast(correct_prediction, tf.float32)
accuracy = tf.reduce_mean(correct_prediction)
graph_location = tempfile.mkdtemp()
print('Saving graph to: %s' % graph_location)
train_writer = tf.summary.FileWriter(graph_location)
train_writer.add_graph(tf.get_default_graph())
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x: batch[0], y_: batch[1], keep_prob: 1.0})
print('step %d, training accuracy %g' % (i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print('test accuracy %g' % accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
完整代码 here
我的困境是,我喜欢使用 tf.layers
(选项 1)定义神经网络的简单性,但我想要训练的可定制性,即“低级 API”(选项2) 提供。具体来说,当使用 tf.layers
实现时,有没有办法在每 n 次训练迭代中报告验证准确性?或者更一般地说,我可以使用 tf.Session()
进行训练/验证,还是只能使用 tf.learn.Estimator
的 fit( )
和 evaluate()
方法?
在所有训练完成后想要最终评估分数似乎很奇怪,因为我认为验证的全部意义在于跟踪训练期间的网络进展。否则,验证和测试之间有什么区别?
如有任何帮助,我们将不胜感激。
最佳答案
你几乎是对的,但是 tf.layers
与 Estimator
类函数等是分开的。如果你愿意,你可以使用 tf.Layers 来定义你的层然后建立你自己的训练循环或任何你喜欢的。您可以认为 tf.Layers
只是您可以在上面的第二个选项中创建的那些函数。
如果您有兴趣能够快速构建一个基本模型,但又能够使用其他功能、您自己的训练循环等对其进行扩展,那么您没有理由不使用层来构建您的模型并与随心所欲。
tf.Layers
- https://www.tensorflow.org/api_docs/python/tf/layers
tf.Estimator
- https://www.tensorflow.org/api_docs/python/tf/estimator
关于python - TensorFlow:tf.layers 与低级 API,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/44951240/
在 Tensorflow(从 v1.2.1 开始)中,似乎有(至少)两个并行 API 来构建计算图。 tf.nn 中有函数,如 conv2d、avg_pool、relu、dropout,tf.laye
我正在处理眼睛轨迹数据和卷积神经网络。我被要求使用 tf.reduce_max(lastconv, axis=2)代替 MaxPooling 层和 tf.reduce_sum(lastconv,axi
TensorFlow 提供了 3 种不同的数据存储格式 tf.train.Feature .它们是: tf.train.BytesList tf.train.FloatList tf.train.In
我正在尝试为上下文强盗问题 (https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part
我在使用 Tensorflow 时遇到问题: 以下代码为卷积 block 生成正确的图: def conv_layer(self, inputs, filter_size = 3, num_filte
我正在将我的训练循环迁移到 Tensorflow 2.0 API .在急切执行模式下,tf.GradientTape替换 tf.gradients .问题是,它们是否具有相同的功能?具体来说: 在函数
tensorflow 中 tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) 的目的是什么? 更多上下文:
我一直在努力学习 TensorFlow,我注意到不同的函数用于相同的目标。例如,为了平方变量,我看到了 tf.square()、tf.math.square() 和 tf.keras.backend.
我正在尝试使用自动编码器开发图像着色器。有 13000 张训练图像。如果我使用 tf.data,每个 epoch 大约需要 45 分钟,如果我使用 tf.utils.keras.Sequence 大约
我尝试按照 tensorflow 教程实现 MNIST CNN 神经网络,并找到这些实现 softmax 交叉熵的方法给出了不同的结果: (1) 不好的结果 softmax = tf.nn.softm
其实,我正在coursera上做deeplearning.ai的作业“Art Generation with Neural Style Transfer”。在函数 compute_layer_styl
训练神经网络学习“异或” 我正在尝试使用“批量归一化”,我创建了一个批量归一化层函数“batch_norm1”。 import tensorflow as tf import nump
我正在尝试协调来自 TF“图形和 session ”指南以及 TF“Keras”指南和 TF Estimators 指南的信息。现在在前者中它说 tf.Session 使计算图能够访问物理硬件以执行图
我正在关注此处的多层感知器示例:https://github.com/aymericdamien/TensorFlow-Examples我对函数 tf.nn.softmax_cross_entropy
回到 TensorFlow = 2.0 中消失了。因此,像这样的解决方案...... with tf.variable_scope("foo"): with tf.variable_scope
我按照官方网站中的步骤安装了tensorflow。但是,在该网站中,作为安装的最后一步,他们给出了一行代码来“验证安装”。但他们没有告诉这段代码会给出什么输出。 该行是: python -c "imp
代码: x = tf.constant([1.,2.,3.], shape = (3,2,4)) y = tf.constant([1.,2.,3.], shape = (3,21,4)) tf.ma
我正在尝试从 Github 训练一个 3D 分割网络.我的模型是用 Keras (Python) 实现的,这是一个典型的 U-Net 模型。模型,总结如下, Model: "functional_3"
我正在使用 TensorFlow 2。我正在尝试优化一个函数,该函数使用经过训练的 tensorflow 模型(毒药)的损失。 @tf.function def totalloss(x): x
试图了解 keras 优化器中的 SGD 优化代码 (source code)。在 get_updates 模块中,我们有: # momentum shapes = [K.int_shape(p) f
我是一名优秀的程序员,十分优秀!