gpt4 book ai didi

python - 如何使用存储在两个列表/向量/系列中的 "coordinate-like"索引更改数据框单元格值?

转载 作者:太空狗 更新时间:2023-10-30 00:04:42 26 4
gpt4 key购买 nike

如果之前有人问过这个问题,我深表歉意,不知何故我找不到答案。

假设我有两个值列表:

rows = [0,1,2]
cols = [0,2,3]

分别表示行和列的索引。这两个列表结合了矩阵中的坐标排序,即 (0,0)、(1,2)、(2,3)。

我想在不使用循环的情况下使用这些坐标来更改 dataframe 的特定单元格。

在 numpy 中,这是微不足道的:

data = np.ones((4,4))
data[rows, cols] = np.nan

array([[nan, 1., 1., 1.],
[ 1., 1., nan, 1.],
[ 1., 1., 1., nan],
[ 1., 1., 1., 1.]])

但是在 pandas 中,我似乎陷入了一个循环:

df = pd.DataFrame(np.ones((4,4)))
for _r, _c in zip(rows, cols):
df.iat[_r, _c] = np.nan

有没有一种方法可以使用列出类坐标索引的向量来直接修改 pandas 中的单元格?


请注意,答案不是改用 iloc,这会选择整个行和列的交集。

最佳答案

很简单!利用 pandas 构建于 numpy 之上这一事实并使用 DataFrame.values

df.values[rows, cols] = np.nan

输出:

     0    1    2    3
0 NaN 1.0 1.0 1.0
1 1.0 1.0 NaN 1.0
2 1.0 1.0 1.0 NaN
3 1.0 1.0 1.0 1.0

关于python - 如何使用存储在两个列表/向量/系列中的 "coordinate-like"索引更改数据框单元格值?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51950049/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com