gpt4 book ai didi

python - 斯坦福 NER 标注器 NLTK(python)与 JAVA 的结果差异

转载 作者:太空狗 更新时间:2023-10-30 00:02:10 25 4
gpt4 key购买 nike

我同时使用 python 和 java 来运行 Stanford NER 标记器,但我看到了结果的差异。

例如,当我输入“Involved in all aspects of data modeling using ERwin as the primary software for this.”这句话时,

Java 结果:

"ERwin": "PERSON"

Python 结果:

In [6]: NERTagger.tag("Involved in all aspects of data modeling using ERwin as the primary software for this.".split())
Out [6]:[(u'Involved', u'O'),
(u'in', u'O'),
(u'all', u'O'),
(u'aspects', u'O'),
(u'of', u'O'),
(u'data', u'O'),
(u'modeling', u'O'),
(u'using', u'O'),
(u'ERwin', u'O'),
(u'as', u'O'),
(u'the', u'O'),
(u'primary', u'O'),
(u'software', u'O'),
(u'for', u'O'),
(u'this.', u'O')]

Python nltk 包装器无法将“ERwin”捕获为 PERSON。

这里有趣的是 Python 和 Java 都使用 2015-04-20 发布的相同训练数据 (english.all.3class.caseless.distsim.crf.ser.gz)。

我的最终目标是让 Python 像 Java 一样工作。

我正在查看 nltk.tag 中的 StanfordNERTagger,看看是否有任何我可以修改的地方。下面是封装代码:

class StanfordNERTagger(StanfordTagger):
"""
A class for Named-Entity Tagging with Stanford Tagger. The input is the paths to:

- a model trained on training data
- (optionally) the path to the stanford tagger jar file. If not specified here,
then this jar file must be specified in the CLASSPATH envinroment variable.
- (optionally) the encoding of the training data (default: UTF-8)

Example:

>>> from nltk.tag import StanfordNERTagger
>>> st = StanfordNERTagger('english.all.3class.distsim.crf.ser.gz') # doctest: +SKIP
>>> st.tag('Rami Eid is studying at Stony Brook University in NY'.split()) # doctest: +SKIP
[('Rami', 'PERSON'), ('Eid', 'PERSON'), ('is', 'O'), ('studying', 'O'),
('at', 'O'), ('Stony', 'ORGANIZATION'), ('Brook', 'ORGANIZATION'),
('University', 'ORGANIZATION'), ('in', 'O'), ('NY', 'LOCATION')]
"""

_SEPARATOR = '/'
_JAR = 'stanford-ner.jar'
_FORMAT = 'slashTags'

def __init__(self, *args, **kwargs):
super(StanfordNERTagger, self).__init__(*args, **kwargs)

@property
def _cmd(self):
# Adding -tokenizerFactory edu.stanford.nlp.process.WhitespaceTokenizer -tokenizerOptions tokenizeNLs=false for not using stanford Tokenizer
return ['edu.stanford.nlp.ie.crf.CRFClassifier',
'-loadClassifier', self._stanford_model, '-textFile',
self._input_file_path, '-outputFormat', self._FORMAT, '-tokenizerFactory', 'edu.stanford.nlp.process.WhitespaceTokenizer', '-tokenizerOptions','\"tokenizeNLs=false\"']

def parse_output(self, text, sentences):
if self._FORMAT == 'slashTags':
# Joint together to a big list
tagged_sentences = []
for tagged_sentence in text.strip().split("\n"):
for tagged_word in tagged_sentence.strip().split():
word_tags = tagged_word.strip().split(self._SEPARATOR)
tagged_sentences.append((''.join(word_tags[:-1]), word_tags[-1]))

# Separate it according to the input
result = []
start = 0
for sent in sentences:
result.append(tagged_sentences[start:start + len(sent)])
start += len(sent);
return result

raise NotImplementedError

或者,如果是因为使用不同的分类器(在 java 代码中,它似乎使用 AbstractSequenceClassifier,另一方面,python nltk 包装器使用 CRFClassifier。)有没有办法在 python 包装器中使用 AbstractSequenceClassifier?

最佳答案

尝试在 CoreNLP 的属性文件(或命令行)中将 maxAdditionalKnownLCWords 设置为 0,如果可能,也将 NLTK 设置为 0。这会禁用允许 NER 系统从测试时间数据中学习一点点的选项,这可能会导致偶尔出现轻微不同的结果。

关于python - 斯坦福 NER 标注器 NLTK(python)与 JAVA 的结果差异,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34626555/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com