- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有一些示例句子要通过 Doc2Vec 模型运行。我的最终目标是大小矩阵(num_sentences,num_features)。
我正在使用 Gensim 包。
from gensim.models.doc2vec import TaggedDocument
from gensim.models import Doc2Vec
# warning: long sample of data. It's just 40 sentences really though.
labeled_sents = [TaggedDocument(words=['u0644', 'u0646', 'u062f', 'u0646', 'u060c', 'u0628', 'u0631', 'u0637', 'u0627', 'u0646', 'u06cc', 'u06c1', 'u06a9', 'u0627'], tags='400'), TaggedDocument(words=['do', 'pan', 'en', '1713', 'o', 'soar', 'onde', 'se', 'sit', 'xfaa'], tags='401'), TaggedDocument(words=['u0420', 'u044c', 'u043e', 'u043d', 'u0442', 'u0433', 'u0435', 'u043d', '1901', 'xa0', 'u2022', 'u041b', 'u043e', 'u0440', 'u0435', 'u043d', 'u0446', 'xa0', 'u0417', 'u0435', 'u0435', 'u043c', 'u0430', 'u043d', '1902', 'xa0', 'u2022', 'u0411', 'u0435', 'u043a', 'u0435', 'u0440', 'u0435', 'u043b', 'xa0', 'u041f', 'u0438', 'u0435', 'u0440', 'u041a', 'u044e', 'u0440', 'u0438', 'xa0', 'u041c', 'u0430', 'u0440', 'u0438', 'u044f', 'u041a', 'u044e', 'u0440', 'u0438', '1903', 'xa0', 'u2022', 'u0420', 'u0435', 'u043b', 'u0435', 'u0439', '1904', 'xa0', 'u2022', 'u041b', 'u0435', 'u043d', 'u0430', 'u0440', 'u0434', '1905', 'xa0', 'u2022', 'u0414', 'u0436', 'u0414', 'u0436', 'u0422', 'u043e', 'u043c', 'u0441', 'u044a', 'u043d', '1906', 'xa0', 'u2022', 'u041c', 'u0430', 'u0439', 'u043a', 'u0435', 'u043b', 'u0441', 'u044a', 'u043d', '1907', 'xa0', 'u2022', 'u041b', 'u0438', 'u043f', 'u043c', 'u0430', 'u043d', '1908', 'xa0', 'u2022', 'u041c', 'u0430', 'u0440', 'u043a', 'u043e', 'u043d', 'u0438', 'xa0', 'u0411', 'u0440', 'u0430', 'u0443', 'u043d', '1909', 'xa0', 'u2022', 'u0412', 'u0430', 'u043d', 'xa0', 'u0434', 'u0435', 'u0440', 'xa0', 'u0412', 'u0430', 'u0430', 'u043b', 'u0441', '1910', 'xa0', 'u2022', 'u0412', 'u0438', 'u043d', '1911', 'xa0', 'u2022', 'u0414', 'u0430', 'u043b', 'u0435', 'u043d', '1912', 'xa0', 'u2022', 'u041a', 'u0430', 'u043c', 'u0435', 'u0440', 'u043b', 'u0438', 'u043d', 'u0433', 'xa0', 'u041e', 'u043d', 'u0435', 'u0441', '1913', 'xa0', 'u2022', 'u0424', 'u043e', 'u043d', 'xa0', 'u041b', 'u0430', 'u0443', 'u0435', '1914', 'xa0', 'u2022', 'u0423', 'u0438', 'u043b', 'u044f', 'u043c', 'u041b', 'u0411', 'u0440', 'u0430', 'u0433', 'xa0', 'u0423', 'u0438', 'u043b', 'u044f', 'u043c', 'u0425', 'u0411', 'u0440', 'u0430', 'u0433', '1915', 'xa0', 'u2022', 'u0411', 'u0430', 'u0440', 'u043a', 'u043b', 'u0430', '1917', 'xa0', 'u2022', 'u041f', 'u043b', 'u0430', 'u043d', 'u043a', '1918', 'xa0', 'u2022', 'u0429', 'u0430', 'u0440', 'u043a', '1919'], tags='402'), TaggedDocument(words=['nagusia', 'da'], tags='403'), TaggedDocument(words=['sino', 'que', 'los', 'ciudadanos', 'pueden', 'elegir', 'detraer', 'un', 'porcentaje', 'de', 'sus', 'impuestos', 'para', 'esta', 'causa', '68', '69', 'un', 'sistema', 'similar', 'se', 'da', 'en', 'alemania', 'o', 'austria', 'aunque', 'all', 'xed', 'se', 'impone', 'un', 'impuesto', 'eclesi', 'xe1stico'], tags='404'), TaggedDocument(words=['1244', 'c', 'xfc'], tags='405'), TaggedDocument(words=['u062a', 'u063a', 'u064a', 'u064a', 'u0631', 'u0644', 'u0641', 'u0638', 'u0627', 'u0644', 'u0643', 'u0644', 'u0645', 'u0629', 'u060c', 'u0641', 'u0645', 'u062b', 'u0644', 'u0627', 'u064b', 'rat', 'u062a', 'u0644', 'u0641', 'u0638', 'u0631', 'u0627', 'u062a'], tags='406'), TaggedDocument(words=['d', 'xfcrziler'], tags='407'), TaggedDocument(words=['xung', 'quanh', 'u0111', 'xf3'], tags='408'), TaggedDocument(words=['oblika', 'u0161to'], tags='409'), TaggedDocument(words=['u0432', 'u0430', 'u043b', 'u044e', 'u0442', 'u043d', 'u043e', 'u0433', 'u043e', 'u0441', 'u043e', 'u044e', 'u0437', 'u0443'], tags='410'), TaggedDocument(words=['sacerdotal', 'es'], tags='411'), TaggedDocument(words=['natoque', 'nisi'], tags='412'), TaggedDocument(words=['u0631', 'u0627', 'u0645', 'u06cc', 'u200c', 'u062a', 'u0648', 'u0627', 'u0646', 'u062f', 'u0631', 'u0627', 'u06cc', 'u0627', 'u0644', 'u0627', 'u062a', 'u0645', 'u062a', 'u062d', 'u062f', 'u0647', 'u0622', 'u0645', 'u0631', 'u06cc', 'u06a9', 'u0627', 'u06a9', 'u0627', 'u0646', 'u0627', 'u062f', 'u0627', 'u0628', 'u0631', 'u0632', 'u06cc', 'u0644', 'u0648', 'u0622', 'u0631', 'u0698', 'u0627', 'u0646', 'u062a', 'u06cc', 'u0646'], tags='413'), TaggedDocument(words=['u0423', 'u0439', 'u0433', 'u0443', 'u0440', 'u0441', 'u044c', 'u043a', 'u0430', 'u043c', 'u043e', 'u0432', 'u0430'], tags='414'), TaggedDocument(words=['termin', 'poznat', 'kao'], tags='415'), TaggedDocument(words=['les', 'fr', 'xe8res', 'lumi', 'xe8re'], tags='416'), TaggedDocument(words=['26', 'u03c0', 'u03b5', 'u03c1', 'u03af', 'u03c0', 'u03bf', 'u03c5', 'u03b1', 'u03b9', 'u03ce', 'u03bd', 'u03b5', 'u03c2', 'u03b7', 'u03c0', 'u03cc', 'u03bb', 'u03b7', 'u03c4', 'u03b7', 'u03c2', 'u0391', 'u03c5', 'u03bb', 'u03ce', 'u03bd', 'u03b1', 'u03c2', 'u03b5', 'u03af', 'u03bd', 'u03b1', 'u03b9', 'u03c3', 'u03ae', 'u03bc', 'u03b5', 'u03c1', 'u03b1'], tags='417'), TaggedDocument(words=['xcen', '13'], tags='418'), TaggedDocument(words=['acts', 'of', 'civil', 'disobedience', 'forced', 'the', 'head', 'of', 'the', 'local'], tags='419'), TaggedDocument(words=['hugo', 'az', 'xe1llamcs', 'xedny'], tags='420'), TaggedDocument(words=['f', 'xf8rste', 'nu', 'uofficielle', 'vers', 'forbindes', 'ofte', 'med', 'nynazistiske', 'synspunkter'], tags='421'), TaggedDocument(words=['gisulti', 'kanila', 'sa', 'mga', 'langyaw', 'nagtuong', 'gipangutana', 'sila', 'kon'], tags='422'), TaggedDocument(words=['u043d', 'u0430', 'u0438', 'u0432', 'u0440', 'u0438', 'u0442'], tags='423'), TaggedDocument(words=['its', 'influence'], tags='424'), TaggedDocument(words=['a', 'b', 'azerbaijan', 'homeowners', 'evicted', 'for', 'city'], tags='425'), TaggedDocument(words=['dinast', 'xeda', 'lunar', 'de'], tags='426'), TaggedDocument(words=['2', 'wyznawa', 'u0142o', 'judaizmu', '5', 'ponad'], tags='427'), TaggedDocument(words=['quyosh', 'vaqt', 'degani'], tags='428'), TaggedDocument(words=['u306e', 'u884c', 'u4fe1', 'u30fb', 'u91cd', 'u5f18', 'u3001', 'u9678', 'u5965', 'u56fd', 'u306e', 'u821e', 'u8349', 'u6d3e', 'u3001', 'u51fa', 'u7fbd', 'u56fd', 'u306e', 'u6708', 'u5c71', 'u6d3e', 'u3001', 'u4f2f', 'u8006', 'u56fd', 'u306e', 'u5b89', 'u92fc', 'u6d3e', 'u3001', 'u5099', 'u4e2d', 'u56fd', 'u306e', 'u53e4', 'u9752', 'u6c5f', 'u6d3e', 'u306e', 'u5b88', 'u6b21', 'u30fb', 'u6052', 'u6b21', 'u30fb', 'u5eb7', 'u6b21', 'u30fb', 'u8c9e', 'u6b21', 'u30fb', 'u52a9', 'u6b21', 'u30fb', 'u5bb6', 'u6b21', 'u30fb', 'u6b63', 'u6052', 'u3001', 'u8c4a', 'u5f8c', 'u56fd', 'u306e', 'u5b9a', 'u79c0', 'u6d3e', 'u3001', 'u85a9', 'u6469', 'u56fd', 'u306e', 'u53e4', 'u6ce2', 'u5e73', 'u6d3e', 'u306e', 'u884c', 'u5b89', 'u306a', 'u3069', 'u304c', 'u5b58', 'u5728', 'u3059', 'u308b', '7', '8', '9'], tags='429'), TaggedDocument(words=['p', 'xe5', '4'], tags='430'), TaggedDocument(words=['editovat'], tags='431'), TaggedDocument(words=['u0437', 'u0437', 'u0430', 'u0431', 'u043e', 'u0439', 'u0441', 'u0442', 'u0432', 'u0430', 'u043c', 'u0443'], tags='432'), TaggedDocument(words=['10', 'u043b', 'u0438', 'u043f', 'u043d', 'u044f', '1943', 'u0440', 'u043e', 'u043a', 'u0443', 'u0441', 'u043e', 'u044e', 'u0437', 'u043d', 'u0438', 'u043a', 'u0438', 'u0432', 'u0438', 'u0441', 'u0430', 'u0434', 'u0438', 'u043b', 'u0438', 'u0441', 'u044f', 'u0432', 'u0421', 'u0438', 'u0446', 'u0438', 'u043b', 'u0456', 'u0457', 'u0406', 'u0442', 'u0430', 'u043b', 'u0456', 'u0439', 'u0441', 'u044c', 'u043a', 'u0456'], tags='433'), TaggedDocument(words=['136', 'selvom', 'det', 'egentligt', 'ligger', 'i', 'sundby', 'p', 'xe5', 'lollandssiden', 'af', 'guldborgsund', 'centret', 'blev', 'grundlagt', 'i', '1989', 'da', 'byen', 'fejrede', '700', 'xe5rs', 'jubil', 'xe6um', 'bymuseet', 'rekonstruerede', 'som', 'de', 'f', 'xf8rste', 'i', 'verden', 'en', 'middelalderlig', 'kastemaskine', 'kaldet', 'en', 'blide'], tags='434'), TaggedDocument(words=['latine', 'redditur'], tags='435'), TaggedDocument(words=['ljubljani', 'in', 'njeni'], tags='436'), TaggedDocument(words=['u0442', 'u0430', 'u043d', 'u044b', 'u043c', 'u0430', 'u043b', 'u049b', 'u043e', 'u043d', 'u0430', 'u049b', 'u04af', 'u0439', 'u043b', 'u0435', 'u0440'], tags='437'), TaggedDocument(words=['u2022', 'hassib', 'ben'], tags='438'), TaggedDocument(words=['kurtulmu', 'u015f', 'olan', 'u0130talya'], tags='439')]
model = Doc2Vec(documents=labeled_sents, size=10, alpha=.035, window=4,
sample=1e-5, workers=4, min_count=1)
现在,我认为 model.docvecs
会给我一个数组列表,第一个数组对应句子 1 的向量,第二个数组对应句子 2 的向量,等等. 但是相反,它的长度是 10!
i获取 model.docvecs [0] =数组([0.02312995,-0.00339695,-0.01273827,0.01944444,-0.03247212, -0.04663946,0.046,0136,3699996996996996996996996996996990036,36996,369,0136,96,36,36,36,36,0136,90010.TREMETENTENTERTENDENTERSENTERTER
那么这些 docvecs
是什么?如何获得所需的输出,在本示例中为维度 (40, 10) 的矩阵?
我看到了这个 here ,正确答案在底部说“其中 99 是我们想要其矢量的文档 ID”。所以这让我更加困惑,因为他似乎在说 model.docvecs
应该索引一个矩阵,其中每一行都是一个文档向量!
最佳答案
TaggedDocument
期望标签是与文档相关的标签的列表
。
在你的情况下,
sentence = TaggedDocument(words=['a', 'b'], tags='400')
被解释为具有 3 个标签 ['4','0','0']
的句子,因此 model.docvecs
返回对应于 10 个标签的向量 - ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
尝试将其更改为
sentence = TaggedDocument(words=['a', 'b'], tags=['400'])
关于python - 了解 Gensim 包中 Doc2Vec 的输出,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37196520/
我开始在 Ethereum blockchain 上了解如何开发智能合约以及如何写 web-script用于与智能合约交互(购买、销售、统计......)我得出了该怎么做的结论。我想知道我是否正确理解
我正在 UIView 中使用 CATransform3DMakeRotation,并且我正在尝试进行 45º,变换就像向后放置一样: 这是我拥有的“代码”,但显然没有这样做。 CATransform3
我目前正在测试 WebRTC 的功能,但我有一些脑逻辑问题。 WebRTC 究竟是什么? 我只读了“STUN”、“P2P”和其他...但是在技术方面什么是正确的 WebRTC(见下一个) 我需要什么
我在看 DelayedInit在 Scala in Depth ... 注释是我对代码的理解。 下面的 trait 接受一个非严格计算的参数(由于 => ),并返回 Unit .它的行为类似于构造函数
谁能给我指出一个用图片和简单的代码片段解释 WCF 的资源。我厌倦了谷歌搜索并在所有搜索结果中找到相同的“ABC”文章。 最佳答案 WCF 是一项非常复杂的技术,在我看来,它的文档记录非常少。启动和运
我期待以下 GetArgs.hs打印出传递给它的参数。 import System.Environment main = do args main 3 4 3 :39:1: Coul
private int vbo; private int ibo; vbo = glGenBuffers(); ibo = glGenBuffers(); glBindBuffer(GL_ARRAY_
我正在尝试一个 for 循环。我添加了一个 if 语句以在循环达到 30 时停止循环。 我见过i <= 10将运行 11 次,因为循环在达到 10 次时仍会运行。 如果有设置 i 的 if 语句,为什
我正在尝试了解 WSGI 的功能并需要一些帮助。 到目前为止,我知道它是一种服务器和应用程序之间的中间件,用于将不同的应用程序框架(位于服务器端)与应用程序连接,前提是相关框架具有 WSGI 适配器。
我是 Javascript 的新手,我正在尝试绕过 while 循环。我了解它们的目的,我想我了解它们的工作原理,但我在使用它们时遇到了麻烦。 我希望 while 值自身重复,直到两个随机数相互匹配。
我刚刚偶然发现Fabric并且文档并没有真正说明它是如何工作的。 我有根据的猜测是您需要在客户端和服务器端都安装它。 Python 代码存储在客户端,并在命令运行时通过 Fabric 的有线协议(pr
我想了解 ConditionalWeakTable .和有什么区别 class ClassA { static readonly ConditionalWeakTable OtherClass
关闭。这个问题需要更多focused .它目前不接受答案。 想改善这个问题吗?更新问题,使其仅关注一个问题 editing this post . 5年前关闭。 Improve this questi
我还没有成功找到任何可以引导我理解 UIPickerView 和 UIPickerView 模型的好例子。有什么建议吗? 最佳答案 为什么不使用默认的 Apple 文档示例?这是来自苹果文档的名为 U
我在看foldM为了获得关于如何使用它的直觉。 foldM :: Monad m => (a -> b -> m a) -> a -> [b] -> m a 在这个简单的例子中,我只返回 [Just
答案What are _mm_prefetch() locality hints?详细说明提示的含义。 我的问题是:我想要哪一个? 我正在处理一个被重复调用数十亿次的函数,其中包含一些 int 参数。
我一直在读这个article了解 gcroot 模板。我明白 gcroot provides handles into the garbage collected heap 然后 the handle
提供了一个用例: 流处理架构;事件进入 Kafka,然后由带有 MongoDB 接收器的作业进行处理。 数据库名称:myWebsite集合:用户 并且作业接收 users 集合中的 user 记录。
你好 我想更详细地了解 NFS 文件系统。我偶然发现了《NFS 图解》这本书,不幸的是它只能作为谷歌图书提供,所以有些页面丢失了。有人可能有另一个很好的资源,这将是在较低级别上了解 NFS 的良好开始
我无法理解这个问题,哪个更随机? rand() 或: rand() * rand() 我发现这是一个真正的脑筋急转弯,你能帮我吗? 编辑: 凭直觉,我知道数学答案是它们同样随机,但我忍不住认为,如果您
我是一名优秀的程序员,十分优秀!