- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在寻找 Pandas 数据框的 pyspark 等价物。特别是,我想对 pyspark 数据帧执行以下操作
# in pandas dataframe, I can do the following operation
# assuming df = pandas dataframe
index = df['column_A'] > 0.0
amount = sum(df.loc[index, 'column_B'] * df.loc[index, 'column_C'])
/ sum(df.loc[index, 'column_C'])
我想知道对 pyspark 数据框执行此操作的 pyspark 等价物是什么?
最佳答案
Spark DataFrame
没有严格的顺序,因此索引没有意义。相反,我们使用类似 SQL 的 DSL。此处您将使用 where
(filter
)和 select
。如果数据看起来像这样:
import pandas as pd
import numpy as np
from pyspark.sql.functions import col, sum as sum_
np.random.seed(1)
df = pd.DataFrame({
c: np.random.randn(1000) for c in ["column_A", "column_B", "column_C"]
})
数量
将是
amount
# 0.9334143225687774
与 Spark 等价的是:
sdf = spark.createDataFrame(df)
(amount_, ) = (sdf
.where(sdf.column_A > 0.0)
.select(sum_(sdf.column_B * sdf.column_C) / sum_(sdf.column_C))
.first())
结果在数值上是等价的:
abs(amount - amount_)
# 1.1102230246251565e-16
你也可以使用条件:
from pyspark.sql.functions import when
pred = col("column_A") > 0.0
amount_expr = sum_(
when(pred, col("column_B")) * when(pred, col("column_C"))
) / sum_(when(pred, col("column_C")))
sdf.select(amount_expr).first()[0]
# 0.9334143225687773
它看起来更像 Pandas,但更冗长。
关于python - `df.loc` 的 pyspark 等价物?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50311732/
努力理解标题中 5 个示例之间的区别。系列与数据框有一些用例吗?什么时候应该使用一个而不是另一个?哪些是等价的? 最佳答案 df[x] — 使用变量 x 索引列。返回 pd.Series df[[x]
在使用Jupyter Notebook时,我必须为问题标题中提到的df.info()、df.head()等单独留出空格. 有没有办法像第二张图片那样把所有这些都放在一个 block 中,并显示所有信息
我想求三列之和,我采取的方法如下: In [14]: a_pd = pd.DataFrame({'a': np.arange(3), 'b': [5, 7,
我想我们大多数人已经使用过这样的东西(至少如果你正在使用 tidyverse): library(tidyverse) example % select(- mpg) 我的问题: 我知道这部分有一
我有一个 DF,里面有大约 20,000 行。我构建了一个 Python 脚本来对这些数据(包括数据透视表)运行大量清理和数学运算。 我想将此 DF 拆分为 3 个独立的 DF,然后根据列值将这 3
我什至不知道如何表达这一点,但在 Python 中有没有一种方法可以引用等号之前的文本,而无需实际再次编写? ** 编辑 - 我在 Jupyter 中使用 python3 我似乎用了半辈子的时间来写作
在 df1 中,每个单元格值都是我想要从 df2 中获取的行的索引。 我想获取 df2 trial_ms 列中行的信息,然后根据获取的 df2 列重命名 df1 中的列。 可重现的 DF: # df1
我想转换此表 0 thg John 3.0 1 thg James 4.0 2 mol NaN 5.0 3 mol NaN NaN 4
我有一个数据框,我想从中提取 val 中的值大于 15 以及 val 不是 NA: df[ !is.na(df$val) & df$val > 15, ] 由于我假设在 R 中经常需要这样的比较,所
鉴于 coming deprecation of df.ix[...] 如何替换这段代码中的 .ix? df_1 = df.ix[:, :datetime.time(16, 50)] d
任何我可以帮助我说出 Pandas 中这两个语句之间的区别-python df.where(df['colname'] == value) 和 df[(df['colname'] == value)]
考虑 df Index A B C 0 20161001 0 24.5 1 20161001 3 26.5 2
所以我需要按“fh_status”列对行进行分组,然后对每个组执行“gini”的最小值、平均值和最大值(将有三个)。我想出了这段代码: m = (df2.groupby(['fh_status']).
我尝试计算不同公司/股票的一些 KPI。我的股票信息位于 df 中,具有以下结构 Ticker Open High Low Ad
我有一个看起来像这样的 df: gene ID Probe ID Chromosome Start Stop 1: H3F3A 539154271
nn_idx_df 包含与 xyz_df 的索引匹配的索引值。如何从 xyz_df 中的 H 列获取值并在 nn_idx_df 中创建新列以匹配 output_df 中所示的结果。我可以解决这个问题,
我目前的 DF 看起来像这样 Combinations Count 1 ('IDLY', 'VADA') 3734 6 ('DOSA', 'IDLY')
我看到了几个与此相关的问题,但我发现这些技巧都不起作用。 我正在尝试根据第二个数据帧的值填充数据帧的所有 NaN 值。第一个 df 很大,第二个 df 将充当某种键。 DF1 Par
我有两个数据帧,df1 和 df2。每个数据帧的唯一标识符是“ID”和“Prop_Number”。我需要将 df1 中的 Num1、2 和 3 列复制到 df2、1_Num 中的相应列...但我不确定
我有以下数据框: 注意:日期是索引 city morning afternoon evening midnight date 2014-05-01 Y
我是一名优秀的程序员,十分优秀!