- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试获得拟合 Beta 分布的正确方法。这不是现实世界中的问题,我只是在测试几种不同方法的效果,而在这样做的过程中,有些事情让我感到困惑。
这是我正在处理的 Python 代码,我在其中测试了 3 种不同的方法:1>:使用矩拟合(样本均值和方差)。2>:通过最小化负对数似然来拟合(通过使用 scipy.optimize.fmin())。3>: 只需调用 scipy.stats.beta.fit()
from scipy.optimize import fmin
from scipy.stats import beta
from scipy.special import gamma as gammaf
import matplotlib.pyplot as plt
import numpy
def betaNLL(param,*args):
'''Negative log likelihood function for beta
<param>: list for parameters to be fitted.
<args>: 1-element array containing the sample data.
Return <nll>: negative log-likelihood to be minimized.
'''
a,b=param
data=args[0]
pdf=beta.pdf(data,a,b,loc=0,scale=1)
lg=numpy.log(pdf)
#-----Replace -inf with 0s------
lg=numpy.where(lg==-numpy.inf,0,lg)
nll=-1*numpy.sum(lg)
return nll
#-------------------Sample data-------------------
data=beta.rvs(5,2,loc=0,scale=1,size=500)
#----------------Normalize to [0,1]----------------
#data=(data-numpy.min(data))/(numpy.max(data)-numpy.min(data))
#----------------Fit using moments----------------
mean=numpy.mean(data)
var=numpy.var(data,ddof=1)
alpha1=mean**2*(1-mean)/var-mean
beta1=alpha1*(1-mean)/mean
#------------------Fit using mle------------------
result=fmin(betaNLL,[1,1],args=(data,))
alpha2,beta2=result
#----------------Fit using beta.fit----------------
alpha3,beta3,xx,yy=beta.fit(data)
print '\n# alpha,beta from moments:',alpha1,beta1
print '# alpha,beta from mle:',alpha2,beta2
print '# alpha,beta from beta.fit:',alpha3,beta3
#-----------------------Plot-----------------------
plt.hist(data,bins=30,normed=True)
fitted=lambda x,a,b:gammaf(a+b)/gammaf(a)/gammaf(b)*x**(a-1)*(1-x)**(b-1) #pdf of beta
xx=numpy.linspace(0,max(data),len(data))
plt.plot(xx,fitted(xx,alpha1,beta1),'g')
plt.plot(xx,fitted(xx,alpha2,beta2),'b')
plt.plot(xx,fitted(xx,alpha3,beta3),'r')
plt.show()
我遇到的问题是关于规范化过程 (z=(x-a)/(b-a)
),其中 a
和 b
是分别为样本的最小值和最大值。
当我不做归一化时,一切正常,不同的拟合方法之间存在细微差异,还算不错。
但是当我进行归一化时,这是我得到的结果图。
只有 moment 方法(绿线)看起来没问题。
无论我使用什么参数生成随机数,scipy.stats.beta.fit() 方法(红线)始终是统一的。
MLE(蓝线)失败。
因此,规范化似乎造成了这些问题。但我认为在 beta 发行版中使用 x=0
和 x=1
是合法的。如果给定一个现实世界的问题,难道不是将样本观察值标准化以使其介于 [0,1] 之间的第一步吗?那么,我该如何拟合曲线呢?
最佳答案
问题是 beta.pdf()
有时返回 0
and inf
for 0
和 1
。例如:
>>> from scipy.stats import beta
>>> beta.pdf(1,1.05,0.95)
/usr/lib64/python2.6/site-packages/scipy/stats/distributions.py:1165: RuntimeWarning: divide by zero encountered in power
Px = (1.0-x)**(b-1.0) * x**(a-1.0)
inf
>>> beta.pdf(0,1.05,0.95)
0.0
您保证在规范化过程中您将在 0
和 1
处获得一个数据样本。尽管您“更正”了 pdf 为 0
的值,但您并未更正那些返回 inf
的值。为了解决这个问题,您可以删除所有不是有限的值:
def betaNLL(param,*args):
"""
Negative log likelihood function for beta
<param>: list for parameters to be fitted.
<args>: 1-element array containing the sample data.
Return <nll>: negative log-likelihood to be minimized.
"""
a, b = param
data = args[0]
pdf = beta.pdf(data,a,b,loc=0,scale=1)
lg = np.log(pdf)
mask = np.isfinite(lg)
nll = -lg[mask].sum()
return nll
不过,实际上您不应该像这样进行归一化,因为您实际上是在将两个数据点不合身。
关于python - 如何在 python 中正确地适应 beta 分布?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/23329331/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!