- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我需要像这样实现一个自定义层:
class MaskedDenseLayer(Layer):
def __init__(self, output_dim, activation, **kwargs):
self.output_dim = output_dim
super(MaskedDenseLayer, self).__init__(**kwargs)
self._activation = activations.get(activation)
def build(self, input_shape):
# Create a trainable weight variable for this layer.
self.kernel = self.add_weight(name='kernel',
shape=(input_shape[0][1], self.output_dim),
initializer='glorot_uniform',
trainable=True)
super(MaskedDenseLayer, self).build(input_shape)
def call(self, l):
self.x = l[0]
self._mask = l[1][1]
print('kernel:', self.kernel)
masked = Multiply()([self.kernel, self._mask])
self._output = K.dot(self.x, masked)
return self._activation(self._output)
def compute_output_shape(self, input_shape):
return (input_shape[0][0], self.output_dim)
这就像Keras API的方式介绍实现自定义层。我需要像这样向这一层提供两个输入:
def main():
with np.load('datasets/simple_tree.npz') as dataset:
inputsize = dataset['inputsize']
train_length = dataset['train_length']
train_data = dataset['train_data']
valid_length = dataset['valid_length']
valid_data = dataset['valid_data']
test_length = dataset['test_length']
test_data = dataset['test_data']
params = dataset['params']
num_of_all_masks = 20
num_of_hlayer = 6
hlayer_size = 5
graph_size = 4
all_masks = generate_all_masks(num_of_all_masks, num_of_hlayer, hlayer_size, graph_size)
input_layer = Input(shape=(4,))
mask_1 = Input( shape = (graph_size , hlayer_size) )
mask_2 = Input( shape = (hlayer_size , hlayer_size) )
mask_3 = Input( shape = (hlayer_size , hlayer_size) )
mask_4 = Input( shape = (hlayer_size , hlayer_size) )
mask_5 = Input( shape = (hlayer_size , hlayer_size) )
mask_6 = Input( shape = (hlayer_size , hlayer_size) )
mask_7 = Input( shape = (hlayer_size , graph_size) )
hlayer1 = MaskedDenseLayer(hlayer_size, 'relu')( [input_layer, mask_1] )
hlayer2 = MaskedDenseLayer(hlayer_size, 'relu')( [hlayer1, mask_2] )
hlayer3 = MaskedDenseLayer(hlayer_size, 'relu')( [hlayer2, mask_3] )
hlayer4 = MaskedDenseLayer(hlayer_size, 'relu')( [hlayer3, mask_4] )
hlayer5 = MaskedDenseLayer(hlayer_size, 'relu')( [hlayer4, mask_5] )
hlayer6 = MaskedDenseLayer(hlayer_size, 'relu')( [hlayer5, mask_6] )
output_layer = MaskedDenseLayer(graph_size, 'sigmoid')( [hlayer6, mask_7] )
autoencoder = Model(inputs=[input_layer, mask_1, mask_2, mask_3,
mask_4, mask_5, mask_6, mask_7], outputs=[output_layer])
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
#reassign_mask = ReassignMask()
for i in range(0, num_of_all_masks):
state = np.random.randint(0,20)
autoencoder.fit(x=[train_data,
np.tile(all_masks[state][0], [300, 1, 1]),
np.tile(all_masks[state][1], [300, 1, 1]),
np.tile(all_masks[state][2], [300, 1, 1]),
np.tile(all_masks[state][3], [300, 1, 1]),
np.tile(all_masks[state][4], [300, 1, 1]),
np.tile(all_masks[state][5], [300, 1, 1]),
np.tile(all_masks[state][6], [300, 1, 1])],
y=[train_data],
epochs=1,
batch_size=20,
shuffle=True,
#validation_data=(valid_data, valid_data),
#callbacks=[reassign_mask],
verbose=1)
不幸的是,当我运行这段代码时,出现了以下错误:
TypeError: can only concatenate tuple (not "int") to tuple
我需要的是一种实现自定义层的方法,该层具有包含前一层和掩码矩阵的两个输入。这里的 all_mask 变量是一个列表,其中包含所有图层的一些预生成掩码。
有人可以帮忙吗?我的代码哪里出了问题。
更新
一些参数:
训练数据:(300, 4)
隐藏层数:6
隐藏层单元:5</p>
掩码:(前一层的大小,当前层的大小)
这是我的模型摘要:
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_361 (InputLayer) (None, 4) 0
__________________________________________________________________________________________________
input_362 (InputLayer) (None, 4, 5) 0
__________________________________________________________________________________________________
masked_dense_layer_281 (MaskedD (None, 5) 20 input_361[0][0]
input_362[0][0]
__________________________________________________________________________________________________
input_363 (InputLayer) (None, 5, 5) 0
__________________________________________________________________________________________________
masked_dense_layer_282 (MaskedD (None, 5) 25 masked_dense_layer_281[0][0]
input_363[0][0]
__________________________________________________________________________________________________
input_364 (InputLayer) (None, 5, 5) 0
__________________________________________________________________________________________________
masked_dense_layer_283 (MaskedD (None, 5) 25 masked_dense_layer_282[0][0]
input_364[0][0]
__________________________________________________________________________________________________
input_365 (InputLayer) (None, 5, 5) 0
__________________________________________________________________________________________________
masked_dense_layer_284 (MaskedD (None, 5) 25 masked_dense_layer_283[0][0]
input_365[0][0]
__________________________________________________________________________________________________
input_366 (InputLayer) (None, 5, 5) 0
__________________________________________________________________________________________________
masked_dense_layer_285 (MaskedD (None, 5) 25 masked_dense_layer_284[0][0]
input_366[0][0]
__________________________________________________________________________________________________
input_367 (InputLayer) (None, 5, 5) 0
__________________________________________________________________________________________________
masked_dense_layer_286 (MaskedD (None, 5) 25 masked_dense_layer_285[0][0]
input_367[0][0]
__________________________________________________________________________________________________
input_368 (InputLayer) (None, 5, 4) 0
__________________________________________________________________________________________________
masked_dense_layer_287 (MaskedD (None, 4) 20 masked_dense_layer_286[0][0]
input_368[0][0]
==================================================================================================
Total params: 165
Trainable params: 165
Non-trainable params: 0
最佳答案
您的input_shape
是一个元组列表。
input_shape: [(None, 4), (None, 4, 5)]
您不能简单地使用 input_shape[0]
或 input_shape[1]
。如果要使用实际值,则必须选择哪个元组,然后选择哪个值。示例:
self.kernel = self.add_weight(name='kernel',
#here:
shape=(input_shape[0][1], self.output_dim),
initializer='glorot_uniform',
trainable=True)
在 compute_output_shape
方法中也有必要(遵循您自己的形状规则),看起来您想要的是连接元组:
return input_shape[0] + (self.output_dim,)
不要忘记取消注释 super(MaskedDenseLayer, self).build(input_shape)
行。
关于python - 如何在 Keras 中实现具有多个输入的自定义层,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46771516/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!