gpt4 book ai didi

c++ - 编译opencv代码时遇到错误

转载 作者:太空狗 更新时间:2023-10-29 23:24:11 29 4
gpt4 key购买 nike

我正在使用 opencv 2.4,下面是我尝试编译的代码。我使用这个命令编译我的代码

g++ -o "match" -ggdb `pkg-config --cflags opencv` match.cpp `pkg-config --libs opencv` 

为什么我会收到此错误:

match.cpp: In function ‘int main(int, const char**)’:
match.cpp:18:37: error: expected type-specifier before ‘SurfFeatureDetector’
match.cpp:18:37: error: conversion from ‘int*’ to non-scalar type ‘cv::Ptr<cv::FeatureDetector>’ requested
match.cpp:18:37: error: expected ‘,’ or ‘;’ before ‘SurfFeatureDetector’
match.cpp:22:2: error: ‘SurfDescriptorExtractor’ was not declared in this scope
match.cpp:22:26: error: expected ‘;’ before ‘extractor’
match.cpp:26:2: error: ‘extractor’ was not declared in this scope
match.cpp:29:2: error: ‘BruteForceMatcher’ was not declared in this scope
match.cpp:29:30: error: expected primary-expression before ‘>’ token
match.cpp:29:32: error: ‘matcher’ was not declared in this scope

我认为我使用的 opencv 版本存在一些问题,因为相同的代码在 2.2 版本上运行良好,但我不确定它是什么。帮助!!

#include <opencv/cv.h>
#include <opencv/highgui.h>
#include <string.h>
#include <iostream>

using namespace std;
using namespace cv;


int main(int argc, const char* argv[])
{
cout << argv[1] << endl << argv[2] << endl;
Mat img1 = imread(argv[1] , CV_LOAD_IMAGE_GRAYSCALE );
Mat img2 = imread(argv[2] , CV_LOAD_IMAGE_GRAYSCALE );

vector<KeyPoint> keypoints1;
vector<KeyPoint> keypoints2;
Ptr<FeatureDetector> feature = new SurfFeatureDetector(2500);
feature->detect(img1,keypoints1);
feature->detect(img2,keypoints2);

SurfDescriptorExtractor extractor;

Mat desc1 , desc2;

extractor.compute(img1,keypoints1,desc1);
extractor.compute(img2,keypoints2,desc2);

BruteForceMatcher<L2<float> > matcher;

vector<vector<DMatch> > matches1;
vector<vector<DMatch> > matches2;
vector<DMatch> symMatches;
vector<DMatch> outMatches;

matcher.knnMatch(desc1,desc2,matches1,2);
matcher.knnMatch(desc2,desc1,matches2,2);

int count_inliers = 0 , count_matches = 0;

for(vector<vector<DMatch> >::const_iterator matIt1 = matches1.begin(); matIt1 != matches1.end(); ++matIt1){
count_matches++;
if(matIt1->size() < 2)
continue;
for(vector<vector<DMatch> >::const_iterator matIt2 = matches2.begin(); matIt2 != matches2.end(); ++matIt2){
if(matIt2->size() < 2)
continue;
if((*matIt1)[0].queryIdx == (*matIt2)[0].trainIdx && (*matIt2)[0].queryIdx == (*matIt1)[0].trainIdx){
count_inliers++;
symMatches.push_back(DMatch((*matIt1)[0].queryIdx,(*matIt1)[0].trainIdx,(*matIt1)[0].distance));
break;
}
}
}

vector<Point2f> points1, points2;

for(vector<DMatch>::const_iterator it = symMatches.begin(); it!=symMatches.end(); ++it){
float x = keypoints1[it->queryIdx].pt.x;
float y = keypoints1[it->queryIdx].pt.y;
points1.push_back(Point2f(x,y));

x = keypoints2[it->trainIdx].pt.x;
y = keypoints2[it->trainIdx].pt.y;
points2.push_back(Point2f(x,y));
}

vector<uchar> inliers(points1.size(),0);

Mat fundamental;
fundamental = findFundamentalMat(Mat(points2),Mat(points1),inliers,CV_FM_RANSAC,2,0.8);

vector<uchar>::const_iterator itIn = inliers.begin();
vector<DMatch>::const_iterator itM = symMatches.begin();
for(;itIn!=inliers.end();++itIn,++itM){
if(*itIn){
outMatches.push_back(*itM);
}
}
cout << count_inliers << endl;
cout << count_matches << endl;
cout << (float) count_inliers/(float) count_matches << endl;

float diff = (float) count_inliers/(float) count_matches;
// if(diff > 0.30){
// cout << "Similar Images " << endl << "-----------------" << endl;
// exit(1);
// }

// vector<uchar> inliers(points1.size(),0);
Mat homography = findHomography(Mat(points2),Mat(points1),inliers,CV_RANSAC,1);

vector<Point2f>::const_iterator itPts = points1.begin();
// vector<uchar>::const_iterator itIn = inliers.begin();
/* while(itPts != points1.end()){
if(*itIn)
circle(img1,*itPts,3,Scalar(255,255,255),2);
++itPts;
++itIn;
}
itPts = points2.begin();
itIn = inliers.begin();
while(itPts != points2.end()){
if(*itIn)
circle(img2,*itPts,3,Scalar(255,255,255),2);
++itPts;
++itIn;
}
*/

Mat result;

warpPerspective(img2,result,homography,Size(2*img2.cols,img2.rows));
Mat half(result,Rect(0,0,img1.cols,img1.rows));

img1.copyTo(half);





// Add results to image and save.
char name[1000];

// strcpy(name,"./surf/surf");
// strcat(name,argv[1]);

cv::Mat output1;
cv::Mat output2;
cv::drawKeypoints(img1, keypoints1, output1);
cv::drawKeypoints(img2, keypoints2, output2);
cv::imwrite("./surf/img11.png", img1);
cv::imwrite("./surf/img21.png", img2);
cv::imwrite("./surf/img31.png", result);
cv::imwrite("./surf/tt.png", result);
cv::imwrite("./surf/img41.png", half);
cv::imwrite("./surf/img51.png", output1);
cv::imwrite("./surf/img61.png", output2);

return 0;
}

最佳答案

现在调用 BruteForceMatcher

cv::BFMatcher

参见 documentation .

你可以这样定义匹配器:

DescriptorMatcher* hammingMatcher = new BFMatcher(NORM_HAMMING,false);
//or
DescriptorMatcher* hammingMatcher = new BFMatcher(NORM_L2,false);

编辑

也在这个sample您可以通过包含 header 查看如何使用旧版本匹配器的代码

#include "hammingseg.h"

关于c++ - 编译opencv代码时遇到错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/10813853/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com