- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我的问题的答案很可能是“否”,但也许有人对这个问题有聪明的解决方案?
问题来了。例如,lapack 函数 zheev
计算复数 Hermitian 矩阵的特征值。问题是矩阵的所有 C++ 实现都存储行主矩阵或列主矩阵,而 zheev()
采用密集的上三角矩阵或下三角矩阵。
所以我的问题是:有什么方法可以避免将我的矩阵复制到仅存储下三角部分或上三角部分的新数组并在 lapack 中使用我当前的完整矩阵?
最佳答案
您在 zheev()
上链接的示例已经使用了未压缩的 LDA*N=N*N
矩阵。事实上,厄密矩阵不需要打包:您可能不必复制矩阵。注意:zheev()
修改矩阵 A
!
LAPACK 处理矩阵的其他存储模式:参见 the naming scheme拉帕克。例如:
zheev()
: 内存占用 N*N
和存储类似于一般解压缩的 N*N
矩阵之一。根据参数 UPLO
的值,使用或忽略上三角部分。无论如何,矩阵可以像大小为 N*N
的一般解压缩矩阵一样填充。在这种情况下,参数 UPLO
的值不应改变获得的特征值。zhpev()
: 打包格式。根据参数 UPLO
的值,存储上对角线项或下对角线项。矩阵存储的内存占用量为 (N*(N+1))/2
。zhbev()
:专用于乐队存储。 当您使用 C 或 C++ 时,这里是通过接口(interface) LAPACKE 使用 zheev()
的示例代码。它可以通过gcc main.c -o main -llapacke -llapack -lblas -lm -Wall
编译。此外,此代码确保函数 zheev()
返回右特征向量,而不是左特征向量。左特征向量是右特征向量的复共轭,如解释的那样here .
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <complex.h>
#include <time.h>
#include <lapacke.h>
int main(void){
int n=200;
srand(time(NULL));
// allocate the matrix, unpacked storage
double complex** A=malloc(n*sizeof(double complex*));
if(A==NULL){fprintf(stderr,"malloc failed\n");exit(1);}
A[0]=malloc(n*n*sizeof(double complex));
if(A[0]==NULL){fprintf(stderr,"malloc failed\n");exit(1);}
int i;
for(i=1;i<n;i++){
A[i]=&A[0][n*i];
}
//populte the matrix, only the lower diagonal part
int j;
for(i=0;i<n;i++){
for(j=0;j<i;j++){
A[i][j]=rand()/((double)RAND_MAX)+rand()/((double)RAND_MAX)*I;
}
A[i][i]=rand()/((double)RAND_MAX)+42.;
}
//saving the matrix, because zheev() changes it.
double complex** As=malloc(n*sizeof(double complex*));
if(As==NULL){fprintf(stderr,"malloc failed\n");exit(1);}
As[0]=malloc(n*n*sizeof(double complex));
if(As[0]==NULL){fprintf(stderr,"malloc failed\n");exit(1);}
for(i=1;i<n;i++){
As[i]=&As[0][n*i];
}
for(i=0;i<n;i++){
for(j=0;j<i;j++){
As[i][j]=A[i][j];
}
As[i][i]=A[i][i];
}
//transpose part, conjugate
for(i=0;i<n;i++){
for(j=i+1;j<n;j++){
As[i][j]=conj(A[j][i]);
}
}
/*
for(i=0;i<n;i++){
for(j=0;j<n;j++){
printf("%g+I%g ",creal(As[i][j]),cimag(As[i][j]));
}
printf("\n");
}
*/
//let's get the eigenvalues and the eigenvectors!
double* w=malloc(n*sizeof(double));
if(w==NULL){fprintf(stderr,"malloc failed\n");exit(1);}
int lda = n;
int info = LAPACKE_zheev(LAPACK_ROW_MAJOR, 'V', 'L', n, A[0], lda, w);
if(info<0){
fprintf(stderr,"argument %d has illegal value\n",-info);
}
if(info>0){
fprintf(stderr,"algorithm failed to converge... bad condition number ?\n");
}
//printing the eigenvalues...
for(i=0;i<n;i++){
printf("%d %g\n",i,w[i]);
}
//let's check that the column i of A is now a right eigenvectors corresponding to the eigenvalue w[i]...
int l=42;
double complex *res=malloc(n*sizeof(double complex));
if(res==NULL){fprintf(stderr,"malloc failed\n");exit(1);}
for(i=0;i<n;i++){
res[i]=0;
for(j=0;j<n;j++){
res[i]+=As[i][j]*A[j][l];
}
res[i]-=w[l]*A[i][l];
}
double norm2res=0;
double norm2vec=0;
for(i=0;i<n;i++){
norm2res+=creal(res[i])*creal(res[i])+cimag(res[i])*cimag(res[i]);
norm2vec+=creal(A[i][l])*creal(A[i][l])+cimag(A[i][l])*cimag(A[i][l]);
}
printf("the norm of the eigenvector is %g\n",sqrt(norm2vec));
printf("||Ax-\\lambda*x||_2/||x||_2 is about %g\n",sqrt(norm2res/norm2vec));
//free the matrix
free(A[0]);
free(A);
free(As[0]);
free(As);
free(w);
free(res);
return 0;
}
在上面的代码中,执行了矩阵的拷贝,但这不是 LAPACKE_zheev()
所要求的。处理一个2000*2000的矩阵,上面代码的内存占用约为167MB。这是矩阵大小 (64MB) 的两倍多,因为执行了复制。但如果不进行复制的话,也不会超过两次。因此,LAPACKE_zheev()
不执行矩阵的任何复制。另请注意 LAPACKE_zheev()
为工作数组分配一些空间。
关于c++ - 避免 LAPACK 中的矩阵半矢量化,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39895823/
假设我有两个矩阵,每个矩阵有两列和不同的行数。我想检查并查看一个矩阵的哪些对在另一个矩阵中。如果这些是一维的,我通常只会做 a %in% x得到我的结果。 match似乎只适用于向量。 > a
关闭。这个问题是opinion-based .它目前不接受答案。 想要改进这个问题? 更新问题,以便 editing this post 可以用事实和引用来回答它. 关闭 9 个月前。 Improv
我只处理过 DirectX 矩阵 我读过一些文章,说不能将 DirectX 矩阵数学库用于 openGL 矩阵。 但我也读过,如果你的数学是一致的,你可以获得类似的结果。那只会让我更加困惑。 任何人都
我编写了一个C++代码来解决线性系统A.x = b,其中A是一个对称矩阵,方法是首先使用LAPACK(E)对角矩阵A = V.D.V^T(因为以后需要特征值),然后求解x = A^-1.b = V^T
我遇到了问题。我想创建二维数组 rows=3 cols=2我的代码如下 int **ptr; int row=3; int col=2; ptr=new int *[col]; for (int i=
我有一个 3d mxnxt 矩阵,我希望能够提取 t 2d nxm 矩阵。在我的例子中,我有一个 1024x1024x10 矩阵,我想要 10 张图像显示给我。 这不是 reshape ,我每次只需要
我在 MATLAB 中有一个 3d 矩阵 (n-by-m-by-t) 表示一段时间内网格中的 n-by-m 测量值.我想要一个二维矩阵,其中空间信息消失了,只剩下 n*m 随着时间 t 的测量值(即:
作为一个简化的示例,我有一个 3D numpy 矩阵,如下所示: a = np.array([[[1,2], [4,np.nan], [7,
作为一个简化的示例,我有一个 3D numpy 矩阵,如下所示: a = np.array([[[1,2], [4,np.nan], [7,
使用 eigen2 , 并给定一个矩阵 A a_0_0, a_0_1, a_0_2, ... a_1_0, a_1_0, a_1_2, ... ... 和一个矩阵B: b_0_0, b_0_1, b_
我想知道如何获得下面的布局。 在中型和大型设备上,我希望有 2 行和 2 列的布局(2 x 2 矩阵)。 在小型(和超小型)设备上或调整为小型设备时,我想要一个 4 行和 1 列的矩阵。 我将通过 a
有什么方法可以向量化以下内容: for i = 1:6 te = k(:,:,:,i).*(c(i)); end 我正在尝试将 4D 矩阵 k 乘以向量 c,方法是将其
如何从填充有 1 和 0 的矩阵中抽取 n 个随机点的样本? a=rep(0:1,5) b=rep(0,10) c=rep(1,10) dataset=matrix(cbind(a,b,c),nrow
我正在尝试创建一个包含 X 个 X 的矩阵。以下代码生成从左上角到右下角的 X 对 Angular 线,而不是从右上角到左下角的 X 对 Angular 线。我不确定从哪里开始。是否应该使用新变量创建
我想在 python 中创建一个每行三列的矩阵,并能够通过任何一行对它们进行索引。矩阵中的每个值都是唯一的。 据我所知,我可以设置如下矩阵: matrix = [["username", "name"
我有点迷茫 我创建了一个名为 person 的类,它具有 age 和 name 属性(以及 get set 方法)。然后在另一个类中,我想创建一个 persons 数组,其中每个人都有不同的年龄和姓名
我有 n 个类,它们要么堆叠,要么不堆叠。所有这些类都扩展了同一个类 (CellObject)。我知道更多类将添加到此列表中,我想创建一种易于在一个地方操纵“可堆叠性”的方法。 我正在考虑创建一个矩阵
我有一个包含 x 个字符串名称及其关联 ID 的文件。本质上是两列数据。 我想要的是一个格式为 x x x 的相关样式表(将相关数据同时作为 x 轴和 y 轴),但我想要 fuzzywuzzy 库的函
机器学习与传统编程的一个重要区别在于机器学习比传统编程涉及了更多的数学知识。不过,随着机器学习的飞速发展,各种框架应运而生,在数据分析等应用中使用机器学习时,使用现成的库和框架成为常态,似乎越来越不需
当我在 julia 中输入这个错误跳转但我不知道为什么,它应该工作。/ julia> A = [1 2 3 4; 5 6 7 8; 1 2 3 4; 5 6 7 8] 4×4 Array{Int64,
我是一名优秀的程序员,十分优秀!