- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有以下问题:
下面是我在屏幕上绘制立方体的方法:
void drawCube()
{
//glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear color and depth buffers
glPushAttrib(GL_POLYGON_BIT | GL_ENABLE_BIT | GL_COLOR_BUFFER_BIT) ;
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE) ;
//glDisable(GL_LIGHTING) ;
glBegin(GL_QUADS); // Begin drawing the color cube with size 3cm x 3.5cm x 4cm
// Top face (y = 1.0f)
// Define vertices in counter-clockwise (CCW) order with normal pointing out
glColor3f(0.0f, 1.0f, 0.0f); // Green
glVertex3f( 1.75f, 1.75f, -4.0f);
glVertex3f(-1.75f, 1.75f, -4.0f);
glVertex3f(-1.75f, 1.75f, 1.0f);
glVertex3f( 1.75f, 1.75f, 1.0f);
// Bottom face (y = -1.0f)
glColor3f(1.0f, 0.5f, 0.0f); // Orange
glVertex3f( 1.75f, -1.75f, 1.0f);
glVertex3f(-1.75f, -1.75f, 1.0f);
glVertex3f(-1.75f, -1.75f, -4.0f);
glVertex3f( 1.75f, -1.75f, -4.0f);
// Front face (z = 1.0f)
glColor3f(1.0f, 0.0f, 0.0f); // Red
glVertex3f( 1.75f, 1.75f, 1.0f);
glVertex3f(-1.75f, 1.75f, 1.0f);
glVertex3f(-1.75f, -1.75f, 1.0f);
glVertex3f( 1.75f, -1.75f, 1.0f);
// Back face (z = -1.0f)
glColor3f(1.0f, 1.0f, 0.0f); // Yellow
glVertex3f( 1.75f, -1.75f, -4.0f);
glVertex3f(-1.75f, -1.75f, -4.0f);
glVertex3f(-1.75f, 1.75f, -4.0f);
glVertex3f( 1.75f, 1.75f, -4.0f);
// Left face (x = -1.0f)
glColor3f(0.0f, 0.0f, 1.0f); // Blue
glVertex3f(-1.75f, 1.75f, 1.0f);
glVertex3f(-1.75f, 1.75f, -4.0f);
glVertex3f(-1.75f, -1.75f, -4.0f);
glVertex3f(-1.75f, -1.75f, 1.0f);
// Right face (x = 1.0f)
glColor3f(1.0f, 0.0f, 1.0f); // Magenta
glVertex3f(1.75f, 1.75f, -4.0f);
glVertex3f(1.75f, 1.75f, 1.0f);
glVertex3f(1.75f, -1.75f, 1.0f);
glVertex3f(1.75f, -1.75f, -4.0f);
glEnd(); // End of drawing color-cube
glPopAttrib() ;
}
问题是如何在所有顶点之间分配“样本点”?
根据我的理解,我需要找到顶点之间的距离并将其分成(比如说)五个相等的部分。为了便于论证,假设两个顶点之间的间距为 1,因此 5 个点将放置在彼此相距 0.2 的距离上。此外,它们需要存储在某种内存结构( vector/数组)中,以便它们中的每一个都可以在稍后阶段访问并转换为屏幕坐标。
但是,我如何才能以完全通用的方式在 C++ 中执行此操作,以便基本上可以将其应用于任何距离度量?
最佳答案
这是我的 drawBox 函数,如果您愿意,可以修改它以在每个面上绘制不同的颜色。
void DrawBox(GLfloat fWidth,GLfloat fHeight,GLfloat fDepth,GLint wslices,GLint dslices,GLint stacks)
{
// Calculate number of primitives on each side of box
// because we can use different tessalation configurations
// we must calculate separate group of box sides
int iTopButtonQuads = wslices * dslices * 2; // Calculate number of quads in top and button sides
int iLeftRightQuads = dslices * stacks * 2; // Calculate number of quads in left and right sides
int iFrontBackQuads = wslices * stacks * 2; // Calculate number of quads in front and back sides
// If we consider to use quads as primitive then each primitive will
// have 4 points, and each point has color, coord and normal attribute.
// So we create separate array to contain each attibute values.
float* pfVertices = new float[(iTopButtonQuads + iLeftRightQuads + iFrontBackQuads) * 3 * 4];
float* pfColors = new float[(iTopButtonQuads + iLeftRightQuads + iFrontBackQuads) * 3 * 4];
float* pfNormals = new float[(iTopButtonQuads + iLeftRightQuads + iFrontBackQuads) * 3 * 4];
int iVertexIndex = 0;
GLfloat Xstep = fWidth / wslices;
GLfloat Ystep = fHeight / stacks;
GLfloat Zstep = fDepth / dslices;
GLfloat firstX = fWidth / 2.0f;
GLfloat firstY = fHeight / 2.0f;
GLfloat firstZ = fDepth / 2.0f;
GLfloat currX = 0.0f;
GLfloat currY = 0.0f;
GLfloat currZ = 0.0f;
GLfloat x_status = 0.0f;
GLfloat y_status = 0.0f;
GLfloat z_status = 0.0f;
// the bottom and the top of the box
for (currZ = -firstZ, z_status = 0.0f; currZ < firstZ - Zstep / 2.0f; currZ += Zstep, z_status += Zstep)
{
for (currX = -firstX, x_status = 0.0f; currX < firstX - Xstep / 2.0f; currX += Xstep, x_status += Xstep)
{
int iCurrentIndex = iVertexIndex * 3 * 4;
float pfNormal[3] = { 0.0f, -1.0f, 0.0f };
memcpy(pfNormals + iCurrentIndex, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 3, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 6, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 9, pfNormal, 3 * 4);
float pfColor[3] = { 1.0f, 0.0f, 0.0f };
memcpy(pfColors + iCurrentIndex, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 3, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 6, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 9, pfColor, 3 * 4);
float pfVertex0[3] = {currX,-firstY,currZ};
float pfVertex1[3] = {currX + Xstep,-firstY,currZ};
float pfVertex2[3] = {currX + Xstep,-firstY,currZ + Zstep};
float pfVertex3[3] = {currX,-firstY,currZ + Zstep};
memcpy(pfVertices + iCurrentIndex, pfVertex0, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 3, pfVertex1, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 6, pfVertex2, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 9, pfVertex3, 3 * 4);
iVertexIndex++;
}
for (currX = -firstX, x_status = 0.0f; currX < firstX - Xstep / 2.0f; currX += Xstep, x_status += Xstep)
{
int iCurrentIndex = iVertexIndex * 3 * 4;
float pfNormal[3] = { 0.0f, 1.0f, 0.0f };
memcpy(pfNormals + iCurrentIndex, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 3, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 6, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 9, pfNormal, 3 * 4);
float pfColor[3] = { 0.0f, 1.0f, 0.0f };
memcpy(pfColors + iCurrentIndex, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 3, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 6, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 9, pfColor, 3 * 4);
float pfVertex0[3] = {currX + Xstep,firstY,currZ + Zstep};
float pfVertex1[3] = {currX + Xstep,firstY,currZ};
float pfVertex2[3] = {currX,firstY,currZ};
float pfVertex3[3] = {currX,firstY,currZ + Zstep};
memcpy(pfVertices + iCurrentIndex, pfVertex0, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 3, pfVertex1, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 6, pfVertex2, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 9, pfVertex3, 3 * 4);
iVertexIndex++;
}
}
// the front and the back of the box
for (currY = -firstY, y_status = 0.0f; currY < firstY - Ystep / 2.0f ; currY += Ystep, y_status += Ystep)
{
for (currX = -firstX, x_status = 0.0f; currX < firstX - Xstep / 2.0f; currX += Xstep, x_status += Xstep)
{
int iCurrentIndex = iVertexIndex * 3 * 4;
float pfNormal[3] = { 0.0f, 0.0f, 1.0f };
memcpy(pfNormals + iCurrentIndex, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 3, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 6, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 9, pfNormal, 3 * 4);
float pfColor[3] = { 0.0f, 0.0f, 1.0f };
memcpy(pfColors + iCurrentIndex, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 3, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 6, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 9, pfColor, 3 * 4);
float pfVertex0[3] = {currX,currY,firstZ};
float pfVertex1[3] = {currX + Xstep,currY,firstZ};
float pfVertex2[3] = {currX + Xstep,currY + Ystep,firstZ};
float pfVertex3[3] = {currX,currY + Ystep,firstZ};
memcpy(pfVertices + iCurrentIndex, pfVertex0, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 3, pfVertex1, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 6, pfVertex2, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 9, pfVertex3, 3 * 4);
iVertexIndex++;
}
for (currX = -firstX, x_status = 0.0f; currX < firstX - Xstep / 2.0f; currX += Xstep, x_status += Xstep)
{
int iCurrentIndex = iVertexIndex * 3 * 4;
float pfNormal[3] = { 0.0f, 0.0f, -1.0f };
memcpy(pfNormals + iCurrentIndex, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 3, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 6, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 9, pfNormal, 3 * 4);
float pfColor[3] = { 0.0f, 1.0f, 1.0f };
memcpy(pfColors + iCurrentIndex, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 3, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 6, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 9, pfColor, 3 * 4);
float pfVertex0[3] = {currX + Xstep,currY + Ystep,-firstZ};
float pfVertex1[3] = {currX + Xstep,currY,-firstZ};
float pfVertex2[3] = {currX,currY,-firstZ};
float pfVertex3[3] = {currX,currY + Ystep,-firstZ};
memcpy(pfVertices + iCurrentIndex, pfVertex0, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 3, pfVertex1, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 6, pfVertex2, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 9, pfVertex3, 3 * 4);
iVertexIndex++;
}
}
// Right side and the left side of the box
for (currY = -firstY, y_status = 0.0f; currY < firstY - Ystep / 2.0f; currY += Ystep, y_status += Ystep)
{
for (currZ = -firstZ, z_status = 0.0f; currZ < firstZ - Zstep / 2.0f; currZ += Zstep, z_status += Zstep)
{
int iCurrentIndex = iVertexIndex * 3 * 4;
float pfNormal[3] = { 1.0f, 0.0f, 0.0f };
memcpy(pfNormals + iCurrentIndex, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 3, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 6, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 9, pfNormal, 3 * 4);
float pfColor[3] = { 1.0f, 0.0f, 1.0f };
memcpy(pfColors + iCurrentIndex, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 3, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 6, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 9, pfColor, 3 * 4);
float pfVertex0[3] = {firstX,currY,currZ};
float pfVertex1[3] = {firstX,currY + Ystep,currZ};
float pfVertex2[3] = {firstX,currY + Ystep,currZ + Zstep};
float pfVertex3[3] = {firstX,currY,currZ + Zstep};
memcpy(pfVertices + iCurrentIndex, pfVertex0, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 3, pfVertex1, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 6, pfVertex2, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 9, pfVertex3, 3 * 4);
iVertexIndex++;
}
for (currZ = -firstZ, z_status = 0.0f; currZ < firstZ - Zstep / 2.0f; currZ += Zstep, z_status += Zstep)
{
int iCurrentIndex = iVertexIndex * 3 * 4;
float pfNormal[3] = { -1.0f, 0.0f, 0.0f };
memcpy(pfNormals + iCurrentIndex, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 3, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 6, pfNormal, 3 * 4);
memcpy(pfNormals + iCurrentIndex + 9, pfNormal, 3 * 4);
float pfColor[3] = { 1.0f, 1.0f, 0.0f };
memcpy(pfColors + iCurrentIndex, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 3, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 6, pfColor, 3 * 4);
memcpy(pfColors + iCurrentIndex + 9, pfColor, 3 * 4);
float pfVertex0[3] = {-firstX,currY,currZ};
float pfVertex1[3] = {-firstX,currY,currZ + Zstep};
float pfVertex2[3] = {-firstX,currY + Ystep,currZ + Zstep};
float pfVertex3[3] = {-firstX,currY + Ystep,currZ};
memcpy(pfVertices + iCurrentIndex, pfVertex0, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 3, pfVertex1, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 6, pfVertex2, 3 * 4);
memcpy(pfVertices + iCurrentIndex + 9, pfVertex3, 3 * 4);
iVertexIndex++;
}
}
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glColorPointer(3, GL_FLOAT, 0, (void*)pfColors);
glNormalPointer(GL_FLOAT, 0, (void*)pfNormals);
glVertexPointer(3, GL_FLOAT, 0, (void*)pfVertices);
glDrawArrays(GL_QUADS, 0, (iTopButtonQuads + iLeftRightQuads + iFrontBackQuads) * 4);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
delete [] pfVertices;
delete [] pfNormals;
delete [] pfColors;
}
结果是这样的
这是使用创建数组的示例,用于收集一些形状统计信息
// Example
// Find min-max of shapes coordinates
// Get coord of first vertex
float fMinX = pfVertices[0];
float fMinY = pfVertices[1];
float fMinZ = pfVertices[2];
float fMaxX = pfVertices[0];
float fMaxY = pfVertices[1];
float fMaxZ = pfVertices[2];
for (int iVertexIndex = 0; iVertexIndex < (iTopButtonQuads + iLeftRightQuads + iFrontBackQuads) * 4; iVertexIndex++)
{
int iCurrentIndex = iVertexIndex * 3; // (x y z) per vertex
if (pfVertices[iCurrentIndex] < fMinX)
fMinX = pfVertices[iCurrentIndex];
if (pfVertices[iCurrentIndex + 1] < fMinY)
fMinY = pfVertices[iCurrentIndex + 1];
if (pfVertices[iCurrentIndex + 2] < fMinZ)
fMinZ = pfVertices[iCurrentIndex + 2];
if (pfVertices[iCurrentIndex] > fMaxX)
fMaxX = pfVertices[iCurrentIndex];
if (pfVertices[iCurrentIndex + 1] > fMaxY)
fMaxY = pfVertices[iCurrentIndex + 1];
if (pfVertices[iCurrentIndex + 2] > fMaxZ)
fMaxZ = pfVertices[iCurrentIndex + 2];
}
// Create an axes aligned bounding box
// by simply drawing inflated min-maxes, that we collect
// example of using indexed primitives
glDisable(GL_CULL_FACE);
GLfloat vertices[] = {
fMinX - 2.0, fMaxY + 2.0, fMaxZ + 2.0,
fMaxX + 2.0, fMaxY + 2.0, fMaxZ + 2.0,
fMaxX + 2.0, fMinY - 2.0, fMaxZ + 2.0,
fMinX - 2.0, fMinY - 2.0, fMaxZ + 2.0,
fMinX - 2.0, fMaxY + 2.0, fMinZ - 2.0,
fMaxX + 2.0, fMaxY + 2.0, fMinZ - 2.0,
fMaxX + 2.0, fMinY - 2.0, fMinZ - 2.0,
fMinX - 2.0, fMinY - 2.0, fMinZ - 2.0
};
GLint indices[] = {
0, 1, 2, 3,
4, 5, 1, 0,
3, 2, 6, 7,
5, 4, 7, 6,
1, 5, 6, 2,
4, 0, 3, 7
};
glColor3f(1.0f, 1.0f, 1.0f);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, (void*)vertices);
glDrawElements(GL_QUADS, 24, GL_UNSIGNED_INT, (void*)indices);
glDisableClientState(GL_VERTEX_ARRAY);
glEnable(GL_CULL_FACE);
关于c++ - 曲面 segmentation 的理论与算法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33124211/
滑动窗口限流 滑动窗口限流是一种常用的限流算法,通过维护一个固定大小的窗口,在单位时间内允许通过的请求次数不超过设定的阈值。具体来说,滑动窗口限流算法通常包括以下几个步骤: 初始化:设置窗口
表达式求值:一个只有+,-,*,/的表达式,没有括号 一种神奇的做法:使用数组存储数字和运算符,先把优先级别高的乘法和除法计算出来,再计算加法和减法 int GetVal(string s){
【算法】前缀和 题目 先来看一道题目:(前缀和模板题) 已知一个数组A[],现在想要求出其中一些数字的和。 输入格式: 先是整数N,M,表示一共有N个数字,有M组询问 接下来有N个数,表示A[1]..
1.前序遍历 根-左-右的顺序遍历,可以使用递归 void preOrder(Node *u){ if(u==NULL)return; printf("%d ",u->val);
先看题目 物品不能分隔,必须全部取走或者留下,因此称为01背包 (只有不取和取两种状态) 看第一个样例 我们需要把4个物品装入一个容量为10的背包 我们可以简化问题,从小到大入手分析 weightva
我最近在一次采访中遇到了这个问题: 给出以下矩阵: [[ R R R R R R], [ R B B B R R], [ B R R R B B], [ R B R R R R]] 找出是否有任
我正在尝试通过 C++ 算法从我的 outlook 帐户发送一封电子邮件,该帐户已经打开并记录,但真的不知道从哪里开始(对于 outlook-c++ 集成),谷歌也没有帮我这么多。任何提示将不胜感激。
我发现自己像这样编写了一个手工制作的 while 循环: std::list foo; // In my case, map, but list is simpler auto currentPoin
我有用于检测正方形的 opencv 代码。现在我想在检测正方形后,代码运行另一个命令。 代码如下: #include "cv.h" #include "cxcore.h" #include "high
我正在尝试模拟一个 matlab 函数“imfill”来填充二进制图像(1 和 0 的二维矩阵)。 我想在矩阵中指定一个起点,并像 imfill 的 4 连接版本那样进行洪水填充。 这是否已经存在于
我正在阅读 Robert Sedgewick 的《C++ 算法》。 Basic recurrences section it was mentioned as 这种循环出现在循环输入以消除一个项目的递
我正在思考如何在我的日历中生成代表任务的数据结构(仅供我个人使用)。我有来自 DBMS 的按日期排序的任务记录,如下所示: 买牛奶(18.1.2013) 任务日期 (2013-01-15) 任务标签(
输入一个未排序的整数数组A[1..n]只有 O(d) :(d int) 计算每个元素在单次迭代中出现在列表中的次数。 map 是balanced Binary Search Tree基于确保 O(nl
我遇到了一个问题,但我仍然不知道如何解决。我想出了如何用蛮力的方式来做到这一点,但是当有成千上万的元素时它就不起作用了。 Problem: Say you are given the followin
我有一个列表列表。 L1= [[...][...][.......].......]如果我在展平列表后获取所有元素并从中提取唯一值,那么我会得到一个列表 L2。我有另一个列表 L3,它是 L2 的某个
我们得到二维矩阵数组(假设长度为 i 和宽度为 j)和整数 k我们必须找到包含这个或更大总和的最小矩形的大小F.e k=7 4 1 1 1 1 1 4 4 Anwser是2,因为4+4=8 >= 7,
我实行 3 类倒制,每周换类。顺序为早类 (m)、晚类 (n) 和下午类 (a)。我固定的订单,即它永远不会改变,即使那个星期不工作也是如此。 我创建了一个函数来获取 ISO 周数。当我给它一个日期时
假设我们有一个输入,它是一个元素列表: {a, b, c, d, e, f} 还有不同的集合,可能包含这些元素的任意组合,也可能包含不在输入列表中的其他元素: A:{e,f} B:{d,f,a} C:
我有一个子集算法,可以找到给定集合的所有子集。原始集合的问题在于它是一个不断增长的集合,如果向其中添加元素,我需要再次重新计算它的子集。 有没有一种方法可以优化子集算法,该算法可以从最后一个计算点重新
我有一个包含 100 万个符号及其预期频率的表格。 我想通过为每个符号分配一个唯一(且前缀唯一)的可变长度位串来压缩这些符号的序列,然后将它们连接在一起以表示序列。 我想分配这些位串,以使编码序列的预
我是一名优秀的程序员,十分优秀!