- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试测量 GPU 的执行时间并将其与 CPU 进行比较。我写了一个 simple_add 函数来添加一个 short int vector 的所有元素。内核代码是:
global const int * A, global const uint * B, global int* C)
{
///------------------------------------------------
/// Add 16 bits of each
int AA=A[get_global_id(0)];
int BB=B[get_global_id(0)];
int AH=0xFFFF0000 & AA;
int AL=0x0000FFFF & AA;
int BH=0xFFFF0000 & BB;
int BL=0x0000FFFF & BB;
int CL=(AL+BL)&0x0000FFFF;
int CH=(AH+BH)&0xFFFF0000;
C[get_global_id(0)]=CH|CL;
}
我为此函数编写了另一个 CPU 版本,并在执行 100 次后测量了它们的执行时间
clock_t before_GPU = clock();
for(int i=0;i<100;i++)
{
queue.enqueueNDRangeKernel(kernel_add,1,
cl::NDRange((size_t)(NumberOfAllElements/4)),cl::NDRange(64));
queue.finish();
}
clock_t after_GPU = clock();
clock_t before_CPU = clock();
for(int i=0;i<100;i++)
AddImagesCPU(A,B,C);
clock_t after_CPU = clock();
调用整个测量函数10次后结果如下:
CPU time: 1359
GPU time: 1372
----------------
CPU time: 1336
GPU time: 1269
----------------
CPU time: 1436
GPU time: 1255
----------------
CPU time: 1304
GPU time: 1266
----------------
CPU time: 1305
GPU time: 1252
----------------
CPU time: 1313
GPU time: 1255
----------------
CPU time: 1313
GPU time: 1253
----------------
CPU time: 1384
GPU time: 1254
----------------
CPU time: 1300
GPU time: 1254
----------------
CPU time: 1322
GPU time: 1254
----------------
问题是我真的希望 GPU 比 CPU 快得多,但事实并非如此。我不明白为什么我的 GPU 速度并不比 CPU 高多少。我的代码有什么问题吗??这是我的 GPU 属性:
-----------------------------------------------------
------------- Selected Platform Properties-------------:
NAME: AMD Accelerated Parallel Processing
EXTENSION: cl_khr_icd cl_amd_event_callback cl_amd_offline_devices cl_khr_d3d10_sharing
VENDOR: Advanced Micro Devices, Inc.
VERSION: OpenCL 1.2 AMD-APP (937.2)
PROFILE: FULL_PROFILE
-----------------------------------------------------
------------- Selected Device Properties-------------:
NAME : ATI RV730
TYPE : 4
VENDOR : Advanced Micro Devices, Inc.
PROFILE : FULL_PROFILE
VERSION : OpenCL 1.0 AMD-APP (937.2)
EXTENSIONS : cl_khr_gl_sharing cl_amd_device_attribute_query cl_khr_d3d10_sharing
MAX_COMPUTE_UNITS : 8
MAX_WORK_GROUP_SIZE : 128
OPENCL_C_VERSION : OpenCL C 1.0
DRIVER_VERSION: CAL 1.4.1734
==========================================================
为了比较,这是我的 CPU 规范:
------------- CPU Properties-------------:
NAME : Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz
TYPE : 2
VENDOR : GenuineIntel
PROFILE : FULL_PROFILE
VERSION : OpenCL 1.2 AMD-APP (937.2)
MAX_COMPUTE_UNITS : 4
MAX_WORK_GROUP_SIZE : 1024
OPENCL_C_VERSION : OpenCL C 1.2
DRIVER_VERSION: 2.0 (sse2,avx)
==========================================================
我还使用 QueryPerformanceCounter 测量了挂钟时间,结果如下:
CPU time: 1304449.6 micro-sec
GPU time: 1401740.82 micro-sec
----------------------
CPU time: 1620076.55 micro-sec
GPU time: 1310317.64 micro-sec
----------------------
CPU time: 1468520.44 micro-sec
GPU time: 1317153.63 micro-sec
----------------------
CPU time: 1304367.29 micro-sec
GPU time: 1251865.14 micro-sec
----------------------
CPU time: 1301589.17 micro-sec
GPU time: 1252889.4 micro-sec
----------------------
CPU time: 1294750.21 micro-sec
GPU time: 1257017.41 micro-sec
----------------------
CPU time: 1297506.93 micro-sec
GPU time: 1252768.9 micro-sec
----------------------
CPU time: 1293511.29 micro-sec
GPU time: 1252019.88 micro-sec
----------------------
CPU time: 1320753.54 micro-sec
GPU time: 1248895.73 micro-sec
----------------------
CPU time: 1296486.95 micro-sec
GPU time: 1255207.91 micro-sec
----------------------
我再次尝试了执行时间的 opencl 分析。
queue.enqueueNDRangeKernel(kernel_add,1,
cl::NDRange((size_t)(NumberOfAllElements/4)),
cl::NDRange(64),NULL,&ev);
ev.wait();
queue.finish();
time_start=ev.getProfilingInfo<CL_PROFILING_COMMAND_START>();
time_end=ev.getProfilingInfo<CL_PROFILING_COMMAND_END>();
一次执行的结果大致相同:
CPU time: 13335.1815 micro-sec
GPU time: 11865.111 micro-sec
----------------------
CPU time: 13884.0235 micro-sec
GPU time: 11663.889 micro-sec
----------------------
CPU time: 19724.7296 micro-sec
GPU time: 14548.222 micro-sec
----------------------
CPU time: 19945.3199 micro-sec
GPU time: 15331.111 micro-sec
----------------------
CPU time: 17973.5055 micro-sec
GPU time: 11641.444 micro-sec
----------------------
CPU time: 12652.6683 micro-sec
GPU time: 11632 micro-sec
----------------------
CPU time: 18875.292 micro-sec
GPU time: 14783.111 micro-sec
----------------------
CPU time: 32782.033 micro-sec
GPU time: 11650.444 micro-sec
----------------------
CPU time: 20462.2257 micro-sec
GPU time: 11647.778 micro-sec
----------------------
CPU time: 14529.6618 micro-sec
GPU time: 11860.112 micro-sec
最佳答案
ATI RV730 具有 VLIW 结构,因此最好尝试 uint4
和 int4
vector 类型,线程总数为 1/4(即 NumberOfAllElements/16)。这也有助于更快地从内存加载每个工作项。
与内存操作相比,内核也没有太多的计算。将缓冲区映射到 RAM 会有更好的性能。不要复制数组,使用 map/unmap enqueue 命令将它们映射到内存。
如果还是不够快,你可以同时使用gpu和cpu来完成前半部分和后半部分的工作,在%50的时间内完成。
也不要将 clFinish 放入循环中。把它放在循环结束之后。这样它将更快地入队并且它已经按顺序执行因此它不会在完成第一个项目之前启动其他项目。我想这是有序队列,在每次入队后添加 clfinish 是额外的开销。在最新的内核之后只需一个 clfinish 就足够了。
ATI RV730:64 个 VLIW 单元,每个单元至少有 4 个流媒体核心。 750 兆赫。
i3-2100:2 个核心(用于防冒泡的线程)每个都有 AVX,能够同时流式处理 8 个操作。所以这可以有 16 个运行中的操作。超过 3 GHz。
简单地将流操作与频率相乘:
ATI RV730 = 192 个单位(更多具有乘加功能,每个 vliw 的第 5 个元素)
i3-2100 = 48 台
所以 gpu 应该至少快 4 倍(使用 int4、uint4)。这适用于简单的 ALU 和 FPU 运算,例如按位运算和乘法。特殊函数(例如超函数性能)可能会有所不同,因为它们仅在每个 vliw 中的第 5 个单元上运行。
关于c++ - 我的 opencl 测试运行速度并不比 CPU 快多少,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42360042/
#include using namespace std; class C{ private: int value; public: C(){ value = 0;
这个问题已经有答案了: What is the difference between char a[] = ?string?; and char *p = ?string?;? (8 个回答) 已关闭
关闭。此题需要details or clarity 。目前不接受答案。 想要改进这个问题吗?通过 editing this post 添加详细信息并澄清问题. 已关闭 7 年前。 此帖子已于 8 个月
除了调试之外,是否有任何针对 c、c++ 或 c# 的测试工具,其工作原理类似于将独立函数复制粘贴到某个文本框,然后在其他文本框中输入参数? 最佳答案 也许您会考虑单元测试。我推荐你谷歌测试和谷歌模拟
我想在第二台显示器中移动一个窗口 (HWND)。问题是我尝试了很多方法,例如将分辨率加倍或输入负值,但它永远无法将窗口放在我的第二台显示器上。 关于如何在 C/C++/c# 中执行此操作的任何线索 最
我正在寻找 C/C++/C## 中不同类型 DES 的现有实现。我的运行平台是Windows XP/Vista/7。 我正在尝试编写一个 C# 程序,它将使用 DES 算法进行加密和解密。我需要一些实
很难说出这里要问什么。这个问题模棱两可、含糊不清、不完整、过于宽泛或夸夸其谈,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开,visit the help center . 关闭 1
有没有办法强制将另一个 窗口置于顶部? 不是应用程序的窗口,而是另一个已经在系统上运行的窗口。 (Windows, C/C++/C#) 最佳答案 SetWindowPos(that_window_ha
假设您可以在 C/C++ 或 Csharp 之间做出选择,并且您打算在 Windows 和 Linux 服务器上运行同一服务器的多个实例,那么构建套接字服务器应用程序的最明智选择是什么? 最佳答案 如
你们能告诉我它们之间的区别吗? 顺便问一下,有什么叫C++库或C库的吗? 最佳答案 C++ 标准库 和 C 标准库 是 C++ 和 C 标准定义的库,提供给 C++ 和 C 程序使用。那是那些词的共同
下面的测试代码,我将输出信息放在注释中。我使用的是 gcc 4.8.5 和 Centos 7.2。 #include #include class C { public:
很难说出这里问的是什么。这个问题是含糊的、模糊的、不完整的、过于宽泛的或修辞性的,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开它,visit the help center 。 已关
我的客户将使用名为 annoucement 的结构/类与客户通信。我想我会用 C++ 编写服务器。会有很多不同的类继承annoucement。我的问题是通过网络将这些类发送给客户端 我想也许我应该使用
我在 C# 中有以下函数: public Matrix ConcatDescriptors(IList> descriptors) { int cols = descriptors[0].Co
我有一个项目要编写一个函数来对某些数据执行某些操作。我可以用 C/C++ 编写代码,但我不想与雇主共享该函数的代码。相反,我只想让他有权在他自己的代码中调用该函数。是否可以?我想到了这两种方法 - 在
我使用的是编写糟糕的第 3 方 (C/C++) Api。我从托管代码(C++/CLI)中使用它。有时会出现“访问冲突错误”。这使整个应用程序崩溃。我知道我无法处理这些错误[如果指针访问非法内存位置等,
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 我们不允许提问寻求书籍、工具、软件库等的推荐。您可以编辑问题,以便用事实和引用来回答。 关闭 7 年前。
已关闭。此问题不符合Stack Overflow guidelines 。目前不接受答案。 要求我们推荐或查找工具、库或最喜欢的场外资源的问题对于 Stack Overflow 来说是偏离主题的,因为
我有一些 C 代码,将使用 P/Invoke 从 C# 调用。我正在尝试为这个 C 函数定义一个 C# 等效项。 SomeData* DoSomething(); struct SomeData {
这个问题已经有答案了: Why are these constructs using pre and post-increment undefined behavior? (14 个回答) 已关闭 6
我是一名优秀的程序员,十分优秀!