- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在编写一个耗时的程序。为了减少时间,我尽力使用 numpy.dot
而不是 for
循环。
但是,我发现矢量化程序的性能比 for 循环版本差得多:
import numpy as np
import datetime
kpt_list = np.zeros((10000,20),dtype='float')
rpt_list = np.zeros((1000,20),dtype='float')
h_r = np.zeros((20,20,1000),dtype='complex')
r_ndegen = np.zeros(1000,dtype='float')
r_ndegen.fill(1)
# setup completed
# this is a the vectorized version
r_ndegen_tile = np.tile(r_ndegen.reshape(1000, 1), 10000)
start = datetime.datetime.now()
phase = np.exp(1j * np.dot(rpt_list, kpt_list.T))/r_ndegen_tile
kpt_data_1 = h_r.dot(phase)
end = datetime.datetime.now()
print((end-start).total_seconds())
# the result is 19.302483
# this is the for loop version
kpt_data_2 = np.zeros((20, 20, 10000), dtype='complex')
start = datetime.datetime.now()
for i in range(10000):
kpt = kpt_list[i, :]
phase = np.exp(1j * np.dot(kpt, rpt_list.T))/r_ndegen
kpt_data_2[:, :, i] = h_r.dot(phase)
end = datetime.datetime.now()
print((end-start).total_seconds())
# the result is 7.74583
这里发生了什么?
最佳答案
我建议您做的第一件事是将您的脚本分解成单独的函数,以便更轻松地进行分析和调试:
def setup(n1=10000, n2=1000, n3=20, seed=None):
gen = np.random.RandomState(seed)
kpt_list = gen.randn(n1, n3).astype(np.float)
rpt_list = gen.randn(n2, n3).astype(np.float)
h_r = (gen.randn(n3, n3,n2) + 1j*gen.randn(n3, n3,n2)).astype(np.complex)
r_ndegen = gen.randn(1000).astype(np.float)
return kpt_list, rpt_list, h_r, r_ndegen
def original_vec(*args, **kwargs):
kpt_list, rpt_list, h_r, r_ndegen = setup(*args, **kwargs)
r_ndegen_tile = np.tile(r_ndegen.reshape(1000, 1), 10000)
phase = np.exp(1j * np.dot(rpt_list, kpt_list.T)) / r_ndegen_tile
kpt_data = h_r.dot(phase)
return kpt_data
def original_loop(*args, **kwargs):
kpt_list, rpt_list, h_r, r_ndegen = setup(*args, **kwargs)
kpt_data = np.zeros((20, 20, 10000), dtype='complex')
for i in range(10000):
kpt = kpt_list[i, :]
phase = np.exp(1j * np.dot(kpt, rpt_list.T)) / r_ndegen
kpt_data[:, :, i] = h_r.dot(phase)
return kpt_data
我还强烈建议使用随机数据而不是全零或全一数组,除非那是您的实际数据的样子(!)。这使得检查代码的正确性变得更加容易 - 例如,如果您的最后一步是乘以一个零矩阵,那么您的输出将始终为全零,无论之前是否存在错误你的代码。
接下来,我将通过 line_profiler
运行这些函数查看他们大部分时间都花在哪里。特别是对于 original_vec
:
In [1]: %lprun -f original_vec original_vec()
Timer unit: 1e-06 s
Total time: 23.7598 s
File: <ipython-input-24-c57463f84aad>
Function: original_vec at line 12
Line # Hits Time Per Hit % Time Line Contents
==============================================================
12 def original_vec(*args, **kwargs):
13
14 1 86498 86498.0 0.4 kpt_list, rpt_list, h_r, r_ndegen = setup(*args, **kwargs)
15
16 1 69700 69700.0 0.3 r_ndegen_tile = np.tile(r_ndegen.reshape(1000, 1), 10000)
17 1 1331947 1331947.0 5.6 phase = np.exp(1j * np.dot(rpt_list, kpt_list.T)) / r_ndegen_tile
18 1 22271637 22271637.0 93.7 kpt_data = h_r.dot(phase)
19
20 1 4 4.0 0.0 return kpt_data
您可以看到它花费了 93% 的时间来计算 h_r
和 phase
之间的点积。这里,h_r
是一个(20, 20, 1000)
数组,phase
是(1000, 10000)
。我们正在计算 h_r
的最后一个维度和 phase
的第一个维度的和积(您可以用 einsum
表示法将其写为 ijk,kl->ijl
).
h_r
的前两个维度在这里并不重要 - 我们可以轻松地将 h_r
reshape 为 (20*20, 1000)
点积之前的数组。事实证明,这种 reshape 操作本身可以带来巨大的性能提升:
In [2]: %timeit h_r.dot(phase)
1 loop, best of 3: 22.6 s per loop
In [3]: %timeit h_r.reshape(-1, 1000).dot(phase)
1 loop, best of 3: 1.04 s per loop
我不完全确定为什么会这样——我希望 numpy 的 dot
函数足够智能,可以自动应用这个简单的优化。在我的笔记本电脑上,第二种情况似乎使用了多线程,而第一种情况则没有,这表明它可能没有调用多线程 BLAS 例程。
这是一个包含整形操作的矢量化版本:
def new_vec(*args, **kwargs):
kpt_list, rpt_list, h_r, r_ndegen = setup(*args, **kwargs)
phase = np.exp(1j * np.dot(rpt_list, kpt_list.T)) / r_ndegen[:, None]
kpt_data = h_r.reshape(-1, phase.shape[0]).dot(phase)
return kpt_data.reshape(h_r.shape[:2] + (-1,))
-1
索引告诉 numpy 根据其他维度和数组中元素的数量推断这些维度的大小。我也用过 broadcasting除以 r_ndegen
,这样就不需要 np.tile
。
通过使用相同的随机输入数据,我们可以检查新版本给出的结果是否与原始版本相同:
In [4]: ans1 = original_loop(seed=0)
In [5]: ans2 = new_vec(seed=0)
In [6]: np.allclose(ans1, ans2)
Out[6]: True
一些性能基准:
In [7]: %timeit original_loop()
1 loop, best of 3: 13.5 s per loop
In [8]: %timeit original_vec()
1 loop, best of 3: 24.1 s per loop
In [5]: %timeit new_vec()
1 loop, best of 3: 2.49 s per loop
我很好奇为什么 np.dot
对于原始的 (20, 20, 1000)
h_r
数组要慢得多,所以我深入研究了 numpy 源代码。 multiarraymodule.c
中实现的逻辑事实证明非常简单:
#if defined(HAVE_CBLAS)
if (PyArray_NDIM(ap1) <= 2 && PyArray_NDIM(ap2) <= 2 &&
(NPY_DOUBLE == typenum || NPY_CDOUBLE == typenum ||
NPY_FLOAT == typenum || NPY_CFLOAT == typenum)) {
return cblas_matrixproduct(typenum, ap1, ap2, out);
}
#endif
换句话说,numpy 只是检查输入数组中的任何一个是否有 > 2 个维度,并立即回退到矩阵-矩阵乘法的非 BLAS 实现。检查两个数组的内部维度是否兼容似乎不应该太困难,如果兼容,则将它们视为二维并对它们执行 *gemm
矩阵-矩阵乘法。事实上there's an open feature request for this dating back to 2012 ,如果有任何 numpy 开发人员正在阅读......
与此同时,乘张量时要注意这是一个很好的性能技巧。
我忘了 np.tensordot
.由于它在二维数组上调用与 np.dot
相同的底层 BLAS 例程,因此它可以获得相同的性能提升,但没有所有那些丑陋的 reshape
操作:
In [6]: %timeit np.tensordot(h_r, phase, axes=1)
1 loop, best of 3: 1.05 s per loop
关于python - 在 numpy 中矢量化后的性能损失,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35578145/
我需要将文本放在 中在一个 Div 中,在另一个 Div 中,在另一个 Div 中。所以这是它的样子: #document Change PIN
奇怪的事情发生了。 我有一个基本的 html 代码。 html,头部, body 。(因为我收到了一些反对票,这里是完整的代码) 这是我的CSS: html { backgroun
我正在尝试将 Assets 中的一组图像加载到 UICollectionview 中存在的 ImageView 中,但每当我运行应用程序时它都会显示错误。而且也没有显示图像。 我在ViewDidLoa
我需要根据带参数的 perl 脚本的输出更改一些环境变量。在 tcsh 中,我可以使用别名命令来评估 perl 脚本的输出。 tcsh: alias setsdk 'eval `/localhome/
我使用 Windows 身份验证创建了一个新的 Blazor(服务器端)应用程序,并使用 IIS Express 运行它。它将显示一条消息“Hello Domain\User!”来自右上方的以下 Ra
这是我的方法 void login(Event event);我想知道 Kotlin 中应该如何 最佳答案 在 Kotlin 中通配符运算符是 * 。它指示编译器它是未知的,但一旦知道,就不会有其他类
看下面的代码 for story in book if story.title.length < 140 - var story
我正在尝试用 C 语言学习字符串处理。我写了一个程序,它存储了一些音乐轨道,并帮助用户检查他/她想到的歌曲是否存在于存储的轨道中。这是通过要求用户输入一串字符来完成的。然后程序使用 strstr()
我正在学习 sscanf 并遇到如下格式字符串: sscanf("%[^:]:%[^*=]%*[*=]%n",a,b,&c); 我理解 %[^:] 部分意味着扫描直到遇到 ':' 并将其分配给 a。:
def char_check(x,y): if (str(x) in y or x.find(y) > -1) or (str(y) in x or y.find(x) > -1):
我有一种情况,我想将文本文件中的现有行包含到一个新 block 中。 line 1 line 2 line in block line 3 line 4 应该变成 line 1 line 2 line
我有一个新项目,我正在尝试设置 Django 调试工具栏。首先,我尝试了快速设置,它只涉及将 'debug_toolbar' 添加到我的已安装应用程序列表中。有了这个,当我转到我的根 URL 时,调试
在 Matlab 中,如果我有一个函数 f,例如签名是 f(a,b,c),我可以创建一个只有一个变量 b 的函数,它将使用固定的 a=a1 和 c=c1 调用 f: g = @(b) f(a1, b,
我不明白为什么 ForEach 中的元素之间有多余的垂直间距在 VStack 里面在 ScrollView 里面使用 GeometryReader 时渲染自定义水平分隔线。 Scrol
我想知道,是否有关于何时使用 session 和 cookie 的指南或最佳实践? 什么应该和什么不应该存储在其中?谢谢! 最佳答案 这些文档很好地了解了 session cookie 的安全问题以及
我在 scipy/numpy 中有一个 Nx3 矩阵,我想用它制作一个 3 维条形图,其中 X 轴和 Y 轴由矩阵的第一列和第二列的值、高度确定每个条形的 是矩阵中的第三列,条形的数量由 N 确定。
假设我用两种不同的方式初始化信号量 sem_init(&randomsem,0,1) sem_init(&randomsem,0,0) 现在, sem_wait(&randomsem) 在这两种情况下
我怀疑该值如何存储在“WORD”中,因为 PStr 包含实际输出。? 既然Pstr中存储的是小写到大写的字母,那么在printf中如何将其给出为“WORD”。有人可以吗?解释一下? #include
我有一个 3x3 数组: var my_array = [[0,1,2], [3,4,5], [6,7,8]]; 并想获得它的第一个 2
我意识到您可以使用如下方式轻松检查焦点: var hasFocus = true; $(window).blur(function(){ hasFocus = false; }); $(win
我是一名优秀的程序员,十分优秀!