- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我假设大多数框架(如 keras/tensorflow/...)会自动使用所有 CPU 内核,但实际上它们似乎并非如此。我只能找到很少的资源可以引导我们在深度学习过程中使用 CPU 的全部容量。我找到了一个 article这是关于
用法的from multiprocessing import Pool
import psutil
import ray
另一方面,基于这个answer对于在多个进程中使用 keras 模型,没有跟踪上述库。是否有更优雅的方式来利用 Keras 的Multiprocessing,因为它的实现非常受欢迎。
例如,如何修改以下简单的 RNN 实现以在学习过程中达到至少 50% 的 CPU 容量?
我应该使用第二个模型作为多任务处理,就像我在下面评论的 LSTM 一样吗?我的意思是我们可以通过使用更多的 CPU 容量来同时运行多个模型吗?
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from keras.layers.normalization import BatchNormalization
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import LSTM,SimpleRNN
from keras.models import Sequential
from keras.optimizers import Adam, RMSprop
df = pd.read_csv("D:\Train.csv", header=None)
index = [i for i in list(range(1440)) if i%3==2]
Y_train= df[index]
df = df.values
#making history by using look-back to prediction next
def create_dataset(dataset,data_train,look_back=1):
dataX,dataY = [],[]
print("Len:",len(dataset)-look_back-1)
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back), :]
dataX.append(a)
dataY.append(data_train[i + look_back, :])
return np.array(dataX), np.array(dataY)
Y_train=np.array(Y_train)
df=np.array(df)
look_back = 10
trainX,trainY = create_dataset(df,Y_train, look_back=look_back)
#Split data into train & test
trainX, testX, trainY, testY = train_test_split(trainX,trainY, test_size=0.2 , shuffle=False)
#Shape of train and test data
trainX, testX, trainY, testY = train_test_split(trainX,trainY, test_size=0.2 , shuffle=False)
print("train size: {}".format(trainX.shape))
print("train Label size: {}".format(trainY.shape))
print("test size: {}".format(testX.shape))
print("test Label size: {}".format(testY.shape))
#train size: (23, 10, 1440)
#train Label size: (23, 960)
#test size: (6, 10, 1440)
#test Label size: (6, 960)
model_RNN = Sequential()
model_RNN.add(SimpleRNN(units=1440, input_shape=(trainX.shape[1], trainX.shape[2])))
model_RNN.add(Dense(960))
model_RNN.add(BatchNormalization())
model_RNN.add(Activation('tanh'))
# Compile model
model_RNN.compile(loss='mean_squared_error', optimizer='adam')
callbacks = [
EarlyStopping(patience=10, verbose=1),
ReduceLROnPlateau(factor=0.1, patience=3, min_lr=0.00001, verbose=1)]
# Fit the model
hist_RNN=model_RNN.fit(trainX, trainY, epochs =50, batch_size =20,validation_data=(testX,testY),verbose=1, callbacks=callbacks)
#predict
Y_train=np.array(trainY)
Y_test=np.array(testX)
Y_RNN_Train_pred=model_RNN.predict(trainX)
Y_RNN_Test_pred=model_RNN.predict(testX)
train_MSE=mean_squared_error(trainY, Y_RNN_Train_pred)
test_MSE=mean_squared_error(testY, Y_RNN_Test_pred)
# create and fit the Simple LSTM model as 2nd model for multi-tasking
#model_LSTM = Sequential()
#model_LSTM.add(LSTM(units = 1440, input_shape=(trainX.shape[1], trainX.shape[2])))
#model_LSTM.add(Dense(units = 960))
#model_LSTM.add(BatchNormalization())
#model_LSTM.add(Activation('tanh'))
#model_LSTM.compile(loss='mean_squared_error', optimizer='adam')
#hist_LSTM=model_LSTM.fit(trainX, trainY, epochs =50, batch_size =20,validation_data=(testX,testY),verbose=1, callbacks=callbacks)
#Y_train=np.array(trainY)
#Y_test=np.array(testX)
#Y_LSTM_Train_pred=model_LSTM.predict(trainX)
#Y_LSTM_Test_pred=model_LSTM.predict(testX)
#train_MSE=mean_squared_error(trainY, Y_LSTM_Train_pred)
#test_MSE=mean_squared_error(testY, Y_LSTM_Test_pred)
#plot losses for RNN + LSTM
f, ax = plt.subplots(figsize=(20, 15))
plt.subplot(1, 2, 1)
ax=plt.plot(hist_RNN.history['loss'] ,label='Train loss')
ax=plt.plot(hist_RNN.history['val_loss'],label='Test/Validation/Prediction loss')
plt.xlabel('Training steps (Epochs = 50)')
plt.ylabel('Loss (MSE) for Sx-Sy & Sxy')
plt.title(' RNN Loss on Train and Test data')
plt.legend()
plt.subplot(1, 2, 2)
ax=plt.plot(hist_LSTM.history['loss'] ,label='Train loss')
ax=plt.plot(hist_LSTM.history['val_loss'],label='Test/Validation/Prediction loss')
plt.xlabel('Training steps (Epochs = 50)')
plt.ylabel('Loss (MSE) for Sx-Sy & Sxy')
plt.title('LSTM Loss on Train and Test data')
plt.legend()
plt.subplots_adjust(top=0.80, bottom=0.38, left=0.12, right=0.90, hspace=0.37, wspace=0.28)
#plt.savefig('All_Losses_history_.png')
plt.show()
注意 我没有访问 CUDA 只是访问没有 VGA 的强大服务器。我的目标是利用多处理和多线程来使用 CPU 的最大容量而不是 30% 这意味着只有一个核心而我有四核!任何建议将不胜感激。我上传了一个格式化的 csv数据集。
更新:我的硬件配置如下:
最佳答案
训练一个模型不会使用 100% 的 CPU 是件好事!现在我们有空间并行训练多个模型并加快整体训练时间。
注意:如果您只想加速此模型,请查看 GPU 或更改超参数,例如批量大小和神经元数量(层大小)。
下面介绍了如何使用 multiprocessing
同时训练多个模型(使用在机器的每个独立 CPU 内核上并行运行的进程)。
multiprocessing.Pool
基本上创建了一个需要执行的作业池。这些进程将选择这些作业并运行它们。当一个作业完成时,进程将从池中选择另一个作业。
import time
import signal
import multiprocessing
def init_worker():
''' Add KeyboardInterrupt exception to mutliprocessing workers '''
signal.signal(signal.SIGINT, signal.SIG_IGN)
def train_model(layer_size):
'''
This code is parallelised and runs on each process
It trains a model with different layer sizes (hyperparameters)
It saves the model and returns the score (error)
'''
import keras
from keras.models import Sequential
from keras.layers import Dense
print(f'Training a model with layer size {layer_size}')
# build your model here
model_RNN = Sequential()
model_RNN.add(Dense(layer_size))
# fit the model (the bit that takes time!)
model_RNN.fit(...)
# lets demonstrate with a sleep timer
time.sleep(5)
# save trained model to a file
model_RNN.save(...)
# you can also return values eg. the eval score
return model_RNN.evaluate(...)
num_workers = 4
hyperparams = [800, 960, 1100]
pool = multiprocessing.Pool(num_workers, init_worker)
scores = pool.map(train_model, hyperparams)
print(scores)
输出:
Training a model with layer size 800
Training a model with layer size 960
Training a model with layer size 1100
[{'size':960,'score':1.0}, {'size':800,'score':1.2}, {'size':1100,'score':0.7}]
这很容易通过代码中的 time.sleep
进行演示。您会看到所有 3 个进程都开始训练工作,然后它们几乎同时完成。如果这是单个处理,则您必须等待每个处理完成才能开始下一个(哈欠!)。
编辑OP 还想要完整的代码。这在 Stack Overflow 上很难,因为我无法在您的环境和您的代码中进行测试。我冒昧地将您的代码复制并粘贴到我上面的模板中。您可能需要添加一些导入,但这已接近“可运行”和“完整”代码。
import time
import signal
import numpy as np
import pandas as pd
import multiprocessing
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.metrics import accuracy_score
def init_worker():
''' Add KeyboardInterrupt exception to mutliprocessing workers '''
signal.signal(signal.SIGINT, signal.SIG_IGN)
def train_model(model_type):
'''
This code is parallelised and runs on each process
It trains a model with different layer sizes (hyperparameters)
It saves the model and returns the score (error)
'''
from keras.layers import LSTM, SimpleRNN, Dense, Activation
from keras.models import Sequential
from keras.callbacks import EarlyStopping, ReduceLROnPlateau
from keras.layers.normalization import BatchNormalization
print(f'Training a model: {model_type}')
callbacks = [
EarlyStopping(patience=10, verbose=1),
ReduceLROnPlateau(factor=0.1, patience=3, min_lr=0.00001, verbose=1),
]
model = Sequential()
if model_type == 'rnn':
model.add(SimpleRNN(units=1440, input_shape=(trainX.shape[1], trainX.shape[2])))
elif model_type == 'lstm':
model.add(LSTM(units=1440, input_shape=(trainX.shape[1], trainX.shape[2])))
model.add(Dense(480))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(
trainX,
trainY,
epochs=50,
batch_size=20,
validation_data=(testX, testY),
verbose=1,
callbacks=callbacks,
)
# predict
Y_Train_pred = model.predict(trainX)
Y_Test_pred = model.predict(testX)
train_MSE = mean_squared_error(trainY, Y_Train_pred)
test_MSE = mean_squared_error(testY, Y_Test_pred)
# you can also return values eg. the eval score
return {'type': model_type, 'train_MSE': train_MSE, 'test_MSE': test_MSE}
# Your code
# ---------
df = pd.read_csv("D:\Train.csv", header=None)
index = [i for i in list(range(1440)) if i % 3 == 2]
Y_train = df[index]
df = df.values
# making history by using look-back to prediction next
def create_dataset(dataset, data_train, look_back=1):
dataX, dataY = [], []
print("Len:", len(dataset) - look_back - 1)
for i in range(len(dataset) - look_back - 1):
a = dataset[i : (i + look_back), :]
dataX.append(a)
dataY.append(data_train[i + look_back, :])
return np.array(dataX), np.array(dataY)
Y_train = np.array(Y_train)
df = np.array(df)
look_back = 10
trainX, trainY = create_dataset(df, Y_train, look_back=look_back)
# Split data into train & test
trainX, testX, trainY, testY = train_test_split(
trainX, trainY, test_size=0.2, shuffle=False
)
# My Code
# -------
num_workers = 2
model_types = ['rnn', 'lstm']
pool = multiprocessing.Pool(num_workers, init_worker)
scores = pool.map(train_model, model_types)
print(scores)
程序输出:
[{'type': 'rnn', 'train_MSE': 0.06648435491248038, 'test_MSE': 0.062323388902691866},
{'type': 'lstm', 'train_MSE': 0.10114341514420684, 'test_MSE': 0.09998065769499974}]
关于python - 如何在使用 Keras 的深度学习中利用多处理和多线程?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56344611/
我将 Bootstrap 与 css 和 java 脚本结合使用。在不影响前端代码的情况下,我真的很难在css中绘制这个背景。在许多问题中,人们将宽度和高度设置为 0%。但是由于我的导航栏,我不能使用
我正在用 c 编写一个程序来读取文件的内容。代码如下: #include void main() { char line[90]; while(scanf("%79[^\
我想使用 javascript 获取矩阵数组的所有对 Angular 线。假设输入输出如下: input = [ [1,2,3], [4,5,6], [7,8,9], ] output =
可以用pdfmake绘制lines,circles和other shapes吗?如果是,是否有documentation或样本?我想用jsPDF替换pdfmake。 最佳答案 是的,有可能。 pdfm
我有一个小svg小部件,其目的是显示角度列表(参见图片)。 现在,角度是线元素,仅具有笔触,没有填充。但是现在我想使用一种“内部填充”颜色和一种“笔触/边框”颜色。我猜想line元素不能解决这个问题,
我正在为带有三角对象的 3D 场景编写一个非常基本的光线转换器,一切都工作正常,直到我决定尝试从场景原点 (0/0/0) 以外的点转换光线。 但是,当我将光线原点更改为 (0/1/0) 时,相交测试突
这个问题已经有答案了: Why do people write "#!/usr/bin/env python" on the first line of a Python script? (22 个回
如何使用大约 50 个星号 * 并使用 for 循环绘制一条水平线?当我尝试这样做时,结果是垂直(而不是水平)列出 50 个星号。 public void drawAstline() { f
这是一个让球以对角线方式下降的 UI,但球保持静止;线程似乎无法正常工作。你能告诉我如何让球移动吗? 请下载一个球并更改目录,以便程序可以找到您的球的分配位置。没有必要下载足球场,但如果您愿意,也可以
我在我的一个项目中使用 Jmeter 和 Ant,当我们生成报告时,它会在报告中显示 URL、#Samples、失败、成功率、平均时间、最短时间、最长时间。 我也想在报告中包含 90% 的时间线。 现
我有一个不寻常的问题,希望有人能帮助我。我想用 Canvas (android) 画一条 Swing 或波浪线,但我不知道该怎么做。它将成为蝌蚪的尾部,所以理想情况下我希望它的形状更像三角形,一端更大
这个问题已经有答案了: Checking Collision of Shapes with JavaFX (1 个回答) 已关闭 8 年前。 我正在使用 JavaFx 8 库。 我的任务很简单:我想检
如何按编号的百分比拆分文件。行数? 假设我想将我的文件分成 3 个部分(60%/20%/20% 部分),我可以手动执行此操作,-_-: $ wc -l brown.txt 57339 brown.tx
我正在努力实现这样的目标: 但这就是我设法做到的。 你能帮我实现预期的结果吗? 更新: 如果我删除 bootstrap.css 依赖项,问题就会消失。我怎样才能让它与 Bootstrap 一起工作?
我目前正在构建一个网站,但遇到了 transform: scale 的问题。我有一个按钮,当用户将鼠标悬停在它上面时,会发生两件事: 背景以对 Angular 线“扫过” 按钮标签颜色改变 按钮稍微变
我需要使用直线和仿射变换绘制大量数据点的图形(缩放图形以适合 View )。 目前,我正在使用 NSBezierPath,但我认为它效率很低(因为点在绘制之前被复制到贝塞尔路径)。通过将我的数据切割成
我正在使用基于 SVM 分类的 HOG 特征检测器。我可以成功提取车牌,但提取的车牌除了车牌号外还有一些不必要的像素/线。我的图像处理流程如下: 在灰度图像上应用 HOG 检测器 裁剪检测到的区域 调
我有以下图片: 我想填充它的轮廓(即我想在这张图片中填充线条)。 我尝试了形态学闭合,但使用大小为 3x3 的矩形内核和 10 迭代并没有填满整个边界。我还尝试了一个 21x21 内核和 1 迭代,但
我必须找到一种算法,可以找到两组数组之间的交集总数,而其中一个数组已排序。 举个例子,我们有这两个数组,我们向相应的数字画直线。 这两个数组为我们提供了总共 7 个交集。 有什么样的算法可以帮助我解决
简单地说 - 我想使用透视投影从近裁剪平面绘制一条射线/线到远裁剪平面。我有我认为是使用各种 OpenGL/图形编程指南中描述的方法通过单击鼠标生成的正确标准化的世界坐标。 我遇到的问题是我的光线似乎
我是一名优秀的程序员,十分优秀!