- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我想要一个带有过滤器的二维卷积,该过滤器取决于 tensorflow 中小批量中的样本。任何想法如何做到这一点,特别是如果每个小批量的样本数量未知?
具体来说,我有 MB x H x W x Channels
形式的输入数据 inp
,我有 F
形式的过滤器MB x fh x fw x Channels x OutChannels
。
假设
inp = tf.placeholder('float', [None, H, W, channels_img], name='img_input')
。
我想做 tf.nn.conv2d(inp, F, strides = [1,1,1,1])
,但这是不允许的,因为 F
不能有小批量维度。知道如何解决这个问题吗?
最佳答案
我认为提议的技巧实际上是不正确的。 tf.conv3d()
层发生的事情是输入在深度(=实际批处理)维度上进行卷积,然后沿着生成的特征图求和。使用 padding='SAME'
,结果输出的数量恰好与批量大小相同,所以有人被愚弄了!
编辑:我认为用不同的过滤器对不同的小批量元素进行卷积的一种可能方法涉及“破解”深度卷积。假设批量大小 MB
已知:
inp = tf.placeholder(tf.float32, [MB, H, W, channels_img])
# F has shape (MB, fh, fw, channels, out_channels)
# REM: with the notation in the question, we need: channels_img==channels
F = tf.transpose(F, [1, 2, 0, 3, 4])
F = tf.reshape(F, [fh, fw, channels*MB, out_channels)
inp_r = tf.transpose(inp, [1, 2, 0, 3]) # shape (H, W, MB, channels_img)
inp_r = tf.reshape(inp, [1, H, W, MB*channels_img])
out = tf.nn.depthwise_conv2d(
inp_r,
filter=F,
strides=[1, 1, 1, 1],
padding='VALID') # here no requirement about padding being 'VALID', use whatever you want.
# Now out shape is (1, H, W, MB*channels*out_channels)
out = tf.reshape(out, [H, W, MB, channels, out_channels) # careful about the order of depthwise conv out_channels!
out = tf.transpose(out, [2, 0, 1, 3, 4])
out = tf.reduce_sum(out, axis=3)
# out shape is now (MB, H, W, out_channels)
如果 MB
未知,应该可以使用 tf.shape()
动态确定它(我认为)
关于python - Tensorflow:小批量中每个样本的不同过滤器的卷积,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42068999/
我正在尝试构建不同(但每个同质)类型的可遍历项的多个交叉产品。所需的返回类型是元组的可遍历对象,其类型与输入可遍历对象中的类型相匹配。例如: List(1, 2, 3) cross Seq("a",
import java.util.Scanner; public class BooleanProduct { public static void main(String[] args) {
任务 - 数字的最大 K 积 时间限制:1 内存限制:64 M 给定一个整数序列 N(1 ≤ N ≤ 10 月,| A i | ≤ 2.10 9)和数量 K(1 ≤ K ≤ N)。找出乘积最大的 K
考虑一个大小为 48x16 的 float 矩阵 A 和一个大小为 1x48 的 float vector b。 请建议一种在常见桌面处理器 (i5/i7) 上尽可能快地计算 b×A 的方法。 背景。
假设我有一个 class Rectangle(object): def __init__(self, len
设 A 为 3x3 阶矩阵。判断矩阵A的 boolean 积可以组成多少个不同的矩阵。 这是我想出的: #include int main() { int matri
背景 生成随机权重列表后: sizes = [784,30,10] weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1],sizes[
我正在开发一个 python 项目并使用 numpy。我经常需要通过单位矩阵计算矩阵的克罗内克积。这些是我代码中的一个相当大的瓶颈,所以我想优化它们。我必须服用两种产品。第一个是: np.kron(n
有人可以提供一个例子说明如何使用 uBLAS 产品来乘法吗?或者,如果有更好的 C++ 矩阵库,您可以推荐我也欢迎。这正在变成一个令人头疼的问题。 这是我的代码: vector myVec(scala
我正在尝试开发一个Javascript程序,它会提示用户输入两个整数,然后显示这两个整数的和、乘积、差和商。现在它只显示总和。我实际上不知道乘法、减法和除法命令是否正在执行。这是 jsfiddle 的
如何使用 la4j 计算 vector (叉)积? vector 乘积为 接受两个 vector 并返回 vector 。 但是他们有scalar product , product of all e
在 C++ 中使用 Lapack 让我有点头疼。我发现为 fortran 定义的函数有点古怪,所以我尝试在 C++ 上创建一些函数,以便我更容易阅读正在发生的事情。 无论如何,我没有让矩阵 vecto
是否可以使用 Apple 的 Metal Performance Shaders 执行 Hadamard 产品?我看到可以使用 this 执行普通矩阵乘法,但我特别在寻找逐元素乘法,或者一种构造乘法的
我正在尝试使用 open mp 加速稀疏矩阵 vector 乘积,代码如下: void zAx(double * z, double * data, long * colind, long * row
有没有一种方法可以使用 cv::Mat OpenCV 中的数据结构? 我检查过 the documentation并且没有内置功能。但是我在尝试将标准矩阵乘法表达式 (*) 与 cv::Mat 类型的
我是一名优秀的程序员,十分优秀!