- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我想知道是否有可能同时调用 idxmin
和 min
(在同一个调用/循环中)。
假设以下数据框:
id option_1 option_2 option_3 option_4
0 0 10.0 NaN NaN 110.0
1 1 NaN 20.0 200.0 NaN
2 2 NaN 300.0 30.0 NaN
3 3 400.0 NaN NaN 40.0
4 4 600.0 700.0 50.0 50.0
我想计算option_
系列的最小值(min
)和包含它的列(idxmin
):
id option_1 option_2 option_3 option_4 min_column min_value
0 0 10.0 NaN NaN 110.0 option_1 10.0
1 1 NaN 20.0 200.0 NaN option_2 20.0
2 2 NaN 300.0 30.0 NaN option_3 30.0
3 3 400.0 NaN NaN 40.0 option_4 40.0
4 4 600.0 700.0 50.0 50.0 option_3 50.0
显然,我可以分别调用 idxmin
和 min
(一个接一个,请参见下面的示例),但是在那里一种在不搜索矩阵两次(一次搜索值,一次搜索索引)的情况下提高效率的方法?
min
和idxmin
的例子import pandas as pd
import numpy as np
df = pd.DataFrame({
'id': [0,1,2,3,4],
'option_1': [10, np.nan, np.nan, 400, 600],
'option_2': [np.nan, 20, 300, np.nan, 700],
'option_3': [np.nan, 200, 30, np.nan, 50],
'option_4': [110, np.nan, np.nan, 40, 50],
})
df['min_column'] = df.filter(like='option').idxmin(1)
df['min_value'] = df.filter(like='option').min(1)
(我预计这将是次优的,因为搜索执行了两次。)
最佳答案
聚合
df.set_index('id').T.agg(['min', 'idxmin']).T
min idxmin
0 10 option_1
1 20 option_2
2 30 option_3
3 40 option_4
4 50 option_3
d_ = df.set_index('id')
v = d_.values
pd.DataFrame(dict(
Min=np.nanmin(v, axis=1),
Idxmin=d_.columns[np.nanargmin(v, axis=1)]
), d_.index)
Idxmin Min
id
0 option_1 10.0
1 option_2 20.0
2 option_3 30.0
3 option_4 40.0
4 option_3 50.0
col_mask = df.columns.str.startswith('option')
options = df.columns[col_mask]
v = np.column_stack([*map(df.get, options)])
pd.DataFrame(dict(
Min=np.nanmin(v, axis=1),
IdxMin=options[np.nanargmin(v, axis=1)]
))
Numpy 解决方案是最快的。
pir_agg_1 pir_agg_2 pir_agg_3 wen_agg_1 tot_agg_1 tot_agg_2
10 12.465358 1.272584 1.0 5.978435 2.168994 2.164858
30 26.538924 1.305721 1.0 5.331755 2.121342 2.193279
100 80.304708 1.277684 1.0 7.221127 2.215901 2.365835
300 230.009000 1.338177 1.0 5.869560 2.505447 2.576457
1000 661.432965 1.249847 1.0 8.931438 2.940030 3.002684
3000 1757.339186 1.349861 1.0 12.541915 4.656864 4.961188
10000 3342.701758 1.724972 1.0 15.287138 6.589233 6.782102
pir_agg_1 pir_agg_2 pir_agg_3 wen_agg_1 tot_agg_1 tot_agg_2
10 8.008895 1.000000 1.977989 5.612195 1.727308 1.769866
30 18.798077 1.000000 1.855291 4.350982 1.618649 1.699162
100 56.725786 1.000000 1.877474 6.749006 1.780816 1.850991
300 132.306699 1.000000 1.535976 7.779359 1.707254 1.721859
1000 253.771648 1.000000 1.232238 12.224478 1.855549 1.639081
3000 346.999495 2.246106 1.000000 21.114310 1.893144 1.626650
10000 431.135940 2.095874 1.000000 32.588886 2.203617 1.793076
def pir_agg_1(df):
return df.set_index('id').T.agg(['min', 'idxmin']).T
def pir_agg_2(df):
d_ = df.set_index('id')
v = d_.values
return pd.DataFrame(dict(
Min=np.nanmin(v, axis=1),
IdxMin=d_.columns[np.nanargmin(v, axis=1)]
))
def pir_agg_3(df):
col_mask = df.columns.str.startswith('option')
options = df.columns[col_mask]
v = np.column_stack([*map(df.get, options)])
return pd.DataFrame(dict(
Min=np.nanmin(v, axis=1),
IdxMin=options[np.nanargmin(v, axis=1)]
))
def wen_agg_1(df):
v = df.filter(like='option')
d = v.stack().sort_values().groupby(level=0).head(1).reset_index(level=1)
d.columns = ['IdxMin', 'Min']
return d
def tot_agg_1(df):
"""I combined toto_tico's 2 filter calls into one"""
d = df.filter(like='option')
return df.assign(
IdxMin=d.idxmin(1),
Min=d.min(1)
)
def tot_agg_2(df):
d = df.filter(like='option')
idxmin = d.idxmin(1)
return df.assign(
IdxMin=idxmin,
Min=d.lookup(d.index, idxmin)
)
def sim_df(n, m):
return pd.DataFrame(
np.random.randint(m, size=(n, m))
).rename_axis('id').add_prefix('option').reset_index()
fs = 'pir_agg_1 pir_agg_2 pir_agg_3 wen_agg_1 tot_agg_1 tot_agg_2'.split()
ix = [10, 30, 100, 300, 1000, 3000, 10000]
res_small_col = pd.DataFrame(index=ix, columns=fs, dtype=float)
res_large_col = pd.DataFrame(index=ix, columns=fs, dtype=float)
for i in ix:
df = sim_df(i, 10)
for j in fs:
stmt = f"{j}(df)"
setp = f"from __main__ import {j}, df"
res_small_col.at[i, j] = timeit(stmt, setp, number=10)
for i in ix:
df = sim_df(i, 100)
for j in fs:
stmt = f"{j}(df)"
setp = f"from __main__ import {j}, df"
res_large_col.at[i, j] = timeit(stmt, setp, number=10)
关于python - 同时获取 `min`和 `idxmin`(或 `max`和 `idxmax`)("simultaneously")?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51932428/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!