gpt4 book ai didi

python - 同时获取 `min`和 `idxmin`(或 `max`和 `idxmax`)("simultaneously")?

转载 作者:太空狗 更新时间:2023-10-29 22:20:45 25 4
gpt4 key购买 nike

我想知道是否有可能同时调用 idxminmin(在同一个调用/循环中)。

假设以下数据框:

    id  option_1    option_2    option_3    option_4
0 0 10.0 NaN NaN 110.0
1 1 NaN 20.0 200.0 NaN
2 2 NaN 300.0 30.0 NaN
3 3 400.0 NaN NaN 40.0
4 4 600.0 700.0 50.0 50.0

我想计算option_系列的最小值(min)和包含它的列(idxmin):

    id  option_1    option_2    option_3    option_4    min_column  min_value
0 0 10.0 NaN NaN 110.0 option_1 10.0
1 1 NaN 20.0 200.0 NaN option_2 20.0
2 2 NaN 300.0 30.0 NaN option_3 30.0
3 3 400.0 NaN NaN 40.0 option_4 40.0
4 4 600.0 700.0 50.0 50.0 option_3 50.0

显然,我可以分别调用 idxminmin(一个接一个,请参见下面的示例),但是在那里一种在不搜索矩阵两次(一次搜索值,一次搜索索引)的情况下提高效率的方法?


调用minidxmin的例子

import pandas as pd
import numpy as np

df = pd.DataFrame({
'id': [0,1,2,3,4],
'option_1': [10, np.nan, np.nan, 400, 600],
'option_2': [np.nan, 20, 300, np.nan, 700],
'option_3': [np.nan, 200, 30, np.nan, 50],
'option_4': [110, np.nan, np.nan, 40, 50],
})

df['min_column'] = df.filter(like='option').idxmin(1)
df['min_value'] = df.filter(like='option').min(1)

(我预计这将是次优的,因为搜索执行了两次。)

最佳答案

Google Colab
GitHub

转置然后聚合

df.set_index('id').T.agg(['min', 'idxmin']).T

min idxmin
0 10 option_1
1 20 option_2
2 30 option_3
3 40 option_4
4 50 option_3

Numpy v1

d_ = df.set_index('id')
v = d_.values
pd.DataFrame(dict(
Min=np.nanmin(v, axis=1),
Idxmin=d_.columns[np.nanargmin(v, axis=1)]
), d_.index)

Idxmin Min
id
0 option_1 10.0
1 option_2 20.0
2 option_3 30.0
3 option_4 40.0
4 option_3 50.0

Numpy v2

col_mask = df.columns.str.startswith('option')
options = df.columns[col_mask]
v = np.column_stack([*map(df.get, options)])
pd.DataFrame(dict(
Min=np.nanmin(v, axis=1),
IdxMin=options[np.nanargmin(v, axis=1)]
))

全模拟

结论

Numpy 解决方案是最快的。

结果

10 列

         pir_agg_1  pir_agg_2  pir_agg_3  wen_agg_1  tot_agg_1  tot_agg_2
10 12.465358 1.272584 1.0 5.978435 2.168994 2.164858
30 26.538924 1.305721 1.0 5.331755 2.121342 2.193279
100 80.304708 1.277684 1.0 7.221127 2.215901 2.365835
300 230.009000 1.338177 1.0 5.869560 2.505447 2.576457
1000 661.432965 1.249847 1.0 8.931438 2.940030 3.002684
3000 1757.339186 1.349861 1.0 12.541915 4.656864 4.961188
10000 3342.701758 1.724972 1.0 15.287138 6.589233 6.782102

enter image description here

100 列

        pir_agg_1  pir_agg_2  pir_agg_3  wen_agg_1  tot_agg_1  tot_agg_2
10 8.008895 1.000000 1.977989 5.612195 1.727308 1.769866
30 18.798077 1.000000 1.855291 4.350982 1.618649 1.699162
100 56.725786 1.000000 1.877474 6.749006 1.780816 1.850991
300 132.306699 1.000000 1.535976 7.779359 1.707254 1.721859
1000 253.771648 1.000000 1.232238 12.224478 1.855549 1.639081
3000 346.999495 2.246106 1.000000 21.114310 1.893144 1.626650
10000 431.135940 2.095874 1.000000 32.588886 2.203617 1.793076

enter image description here

函数

def pir_agg_1(df):
return df.set_index('id').T.agg(['min', 'idxmin']).T

def pir_agg_2(df):
d_ = df.set_index('id')
v = d_.values
return pd.DataFrame(dict(
Min=np.nanmin(v, axis=1),
IdxMin=d_.columns[np.nanargmin(v, axis=1)]
))

def pir_agg_3(df):
col_mask = df.columns.str.startswith('option')
options = df.columns[col_mask]
v = np.column_stack([*map(df.get, options)])
return pd.DataFrame(dict(
Min=np.nanmin(v, axis=1),
IdxMin=options[np.nanargmin(v, axis=1)]
))

def wen_agg_1(df):
v = df.filter(like='option')
d = v.stack().sort_values().groupby(level=0).head(1).reset_index(level=1)
d.columns = ['IdxMin', 'Min']
return d

def tot_agg_1(df):
"""I combined toto_tico's 2 filter calls into one"""
d = df.filter(like='option')
return df.assign(
IdxMin=d.idxmin(1),
Min=d.min(1)
)

def tot_agg_2(df):
d = df.filter(like='option')
idxmin = d.idxmin(1)
return df.assign(
IdxMin=idxmin,
Min=d.lookup(d.index, idxmin)
)

模拟设置

def sim_df(n, m):
return pd.DataFrame(
np.random.randint(m, size=(n, m))
).rename_axis('id').add_prefix('option').reset_index()


fs = 'pir_agg_1 pir_agg_2 pir_agg_3 wen_agg_1 tot_agg_1 tot_agg_2'.split()
ix = [10, 30, 100, 300, 1000, 3000, 10000]

res_small_col = pd.DataFrame(index=ix, columns=fs, dtype=float)
res_large_col = pd.DataFrame(index=ix, columns=fs, dtype=float)

for i in ix:
df = sim_df(i, 10)
for j in fs:
stmt = f"{j}(df)"
setp = f"from __main__ import {j}, df"
res_small_col.at[i, j] = timeit(stmt, setp, number=10)

for i in ix:
df = sim_df(i, 100)
for j in fs:
stmt = f"{j}(df)"
setp = f"from __main__ import {j}, df"
res_large_col.at[i, j] = timeit(stmt, setp, number=10)

关于python - 同时获取 `min`和 `idxmin`(或 `max`和 `idxmax`)("simultaneously")?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51932428/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com