- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在使用 scikit-learn
来查找 tf-idf
值。
我有一组文档
,例如:
D1 = "The sky is blue."
D2 = "The sun is bright."
D3 = "The sun in the sky is bright."
我想创建一个这样的矩阵:
Docs blue bright sky sun
D1 tf-idf 0.0000000 tf-idf 0.0000000
D2 0.0000000 tf-idf 0.0000000 tf-idf
D3 0.0000000 tf-idf tf-idf tf-idf
所以,我在 Python
中的代码是:
import nltk
import string
from sklearn.feature_extraction.text import TfidfVectorizer
from nltk.corpus import stopwords
train_set = ["sky is blue", "sun is bright", "sun in the sky is bright"]
stop_words = stopwords.words('english')
transformer = TfidfVectorizer(stop_words=stop_words)
t1 = transformer.fit_transform(train_set).todense()
print t1
我得到的结果矩阵是:
[[ 0.79596054 0. 0.60534851 0. ]
[ 0. 0.4472136 0. 0.89442719]
[ 0. 0.57735027 0.57735027 0.57735027]]
如果我进行手算,那么矩阵应该是:
Docs blue bright sky sun
D1 0.2385 0.0000000 0.0880 0.0000000
D2 0.0000000 0.0880 0.0000000 0.0880
D3 0.0000000 0.058 0.058 0.058
我正在计算像 blue
作为 tf
= 1/2 = 0.5
和 idf
作为 log(3/1) = 0.477121255
。因此 tf-idf = tf*idf = 0.5*0.477 = 0.2385
。通过这种方式,我正在计算其他 tf-idf
值。现在,我想知道,为什么我在手算矩阵和 Python 矩阵中得到不同的结果?哪个给出了正确的结果?是我手算有问题还是我的 Python 代码有问题?
最佳答案
有两个原因:
根据 source sklearn 不使用此类假设。
首先,它平滑了文档计数(因此永远不会有 0
):
df += int(self.smooth_idf)
n_samples += int(self.smooth_idf)
它使用自然对数 (np.log(np.e)==1
)
idf = np.log(float(n_samples) / df) + 1.0
还应用了默认的 l2
规范化。简而言之,scikit-learn 在计算 tfidf 时做了更多“不错的小事”。这些方法(他们的或你的)都不是坏事。他们只是更先进。
关于python - 使用 scikit-learn 和手工计算的 tf-idf 矩阵值的差异,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/24032485/
来自文档: sklearn.preprocessing.MinMaxScaler.min_ : ndarray, shape (n_features,) Per feature adjustment
这是我的数据:(我重置了索引。日期应该是索引) Date A B C D 0 2013-10-07 -0.002
我正在构建一个分类器,通过贷款俱乐部数据,选择最好的 X 笔贷款。我训练了一个随机森林,并创建了通常的 ROC 曲线、混淆矩阵等。 混淆矩阵将分类器的预测(森林中树木的多数预测)作为参数。但是,我希望
是否有类似于 的 scikit-learn 方法/类元成本 在 Weka 或其他实用程序中实现的算法以执行常量敏感分析? 最佳答案 不,没有。部分分类器提供 class_weight和 sample_
我发现使用相同数据的两种交叉验证技术之间的分类性能存在差异。我想知道是否有人可以阐明这一点。 方法一:cross_validation.train_test_split 方法 2:分层折叠。 具有相同
我正在查看 scikit-learn 文档中的这个示例:http://scikit-learn.org/0.18/auto_examples/model_selection/plot_nested_c
我想训练一个具有很多标称属性的数据集。我从一些帖子中注意到,要转换标称属性必须将它们转换为重复的二进制特征。另外据我所知,这样做在概念上会使数据集稀疏。我也知道 scikit-learn 使用稀疏矩阵
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
我正在尝试在 scikit-learn (sklearn.feature_selection.SelectKBest) 中通过卡方方法进行特征选择。当我尝试将其应用于多标签问题时,我收到此警告: 用户
有几种算法可以构建决策树,例如 CART(分类和回归树)、ID3(迭代二分法 3)等 scikit-learn 默认使用哪种决策树算法? 当我查看一些决策树 python 脚本时,它神奇地生成了带有
有没有办法让 scikit-learn 中的 fit 方法有一个进度条? 是否可以包含自定义的类似 Pyprind 的内容? ? 最佳答案 如果您使用 verbose=1 初始化模型调用前 fit你应
我正在尝试使用 grisSearchCV 在 scikit-learn 中拟合一些模型,并且我想使用“一个标准错误”规则来选择最佳模型,即从分数在 1 以内的模型子集中选择最简约的模型最好成绩的标准误
我有一个预定义的决策树,它是根据基于知识的拆分构建的,我想用它来进行预测。我可以尝试从头开始实现决策树分类器,但那样我就无法在 Scikit 函数中使用 predict 等内置函数。有没有办法将我的树
我正在使用随机森林解决分类问题。为此,我决定使用 Python 库 scikit-learn。但我对随机森林算法和这个工具都很陌生。我的数据包含许多因子变量。我用谷歌搜索,发现像我们在线性回归中所做的
我使用 Keras 回归器对数据进行回归拟合。我使用 Scikit-learn wrapper 和 Pipeline 来首先标准化数据,然后将其拟合到 Keras 回归器上。有点像这样: from s
在 scikit-learn ,有一个 的概念评分函数 .如果我们有一些预测标签和真实标签,我们可以通过调用 scoring(y_true, y_predict) 来获得分数。 .这种评分函数的一个例
我知道 train_test_split 方法将数据集拆分为随机训练和测试子集。并且使用 random_state=int 可以确保每次调用该方法时我们对该数据集都有相同的拆分。 我的问题略有不同。
我正在使用 scikit-learn 0.18.dev0。我知道之前有人问过完全相同的问题 here .我尝试了那里提供的答案,但出现以下错误 >>> def mydist(x, y): ...
我试图在 scikit-learn 中结合递归特征消除和网格搜索。正如您从下面的代码(有效)中看到的那样,我能够从网格搜索中获得最佳估计量,然后将该估计量传递给 RFECV。但是,我宁愿先进行 RFE
我是一名优秀的程序员,十分优秀!