- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在使用 scikit learn 的 Kmeans 算法对评论进行聚类。
sentence_list=['hello how are you', "I am doing great", "my name is abc"]
vectorizer=TfidfVectorizer(min_df=1, max_df=0.9, stop_words='english', decode_error='ignore')
vectorized=vectorizer.fit_transform(sentence_list)
km=KMeans(n_clusters=num_clusters, init='k-means++',n_init=10, verbose=1)
km.fit(vectorized)
当我打印向量化的输出时,它会给我单词的索引和索引的 tf-idf 分数。
所以我想知道,鉴于我们只得到单词的 tfidf 分数,我们如何设法根据单个单词而不是整个文档的分数来对文档进行聚类?或者它可能会这样做......有人可以向我解释这背后的概念吗?
最佳答案
您应该看看 Kmeans algorithm 是如何实现的作品。首先,停用词永远不会被向量化
,因此被 Kmeans 完全忽略,并且对文档的聚类方式没有任何影响。现在假设您有:
sentence_list=["word1", "word2", "word2 word3"]
假设您想要 2 个集群。在这种情况下,您希望第二个和第三个文档在同一个集群中,因为它们共享一个公共(public)词。让我们看看这是如何发生的。
文档向量化
的数字表示如下:
word1 word3 word2
1 0.000000 0.000000 # doc 1
0 1.000000 0.000000 # doc 2
0 0.605349 0.795961 # doc 3
在 Kmeans 的第一步中,一些质心是从数据中随机选择的,例如,文档 1 和文档 3 将作为初始质心:
Centroid 1: [1, 0.000000, 0.000000]
Centroid 2: [0, 0.605349, 0.795961]
现在,如果您计算从每个点(文档)到两个质心中的每一个的距离,您将看到:
最后我们计算剩余文档 2 与每个质心之间的距离,以找出它属于哪个质心:
>>> from scipy.spatial.distance import euclidean
>>> euclidean([0, 1, 0], [1, 0, 0]) # dist(doc2, centroid1)
1.4142135623730951
>>> euclidean([0, 1, 0], [0, 0.605349, 0.795961]) # dist(doc2, centroid2)
0.8884272507056005
所以第二个文档和第二个质心更近,这意味着第二个文档被分配到第二个质心。
关于python - 当我们只向 kmeans 提供单个单词的 tfidf 向量时,kmeans 如何知道如何对文档进行聚类?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27585918/
你好,stackoverflow 社区, 我在运行 kmeans (统计数据包)和 Kmeans (amap 包)在 Iris 数据集上。在这两种情况下,我使用相同的算法(Lloyd–Forgy)、相
我想将KMeans应用于具有Alpha蒙版的图像。它应该只对可见的颜色起作用。我希望能写成一行。起始图:。。天真地使用KMeans(哎呀,都是一种颜色):。。做实验。浏览所有Alpha选项。-Alph
我想将KMeans应用于具有Alpha蒙版的图像。它应该只对可见的颜色起作用。我希望能写成一行。起始图:。。天真地使用KMeans(哎呀,都是一种颜色):。。做实验。浏览所有Alpha选项。-Alph
在对一些具有 3 个簇的向量进行 K 均值拟合时,我能够获取输入数据的标签。KMeans.cluster_centers_ 返回中心的坐标,所以不应该有一些与之对应的向量吗?如何找到这些簇的质心处的值
我正在使用视频中的 kmeans 聚类技术,但我不明白为什么我们在 kmeans 聚类中使用 .fit 方法? kmeans = KMeans(n_clusters=5, random_state=0
MATLAB K-means 给出图像的准确结果,而使用 OpenCV c++ 的 k-means 不给出相同的结果,即使参数相同。实现上有什么不同吗? 最佳答案 Matlab 的 kmeans fu
我正在使用 scikit learn 的 Kmeans 算法对评论进行聚类。 sentence_list=['hello how are you', "I am doing great", "my n
来自 sklearn KMeans 的文档 class sklearn.cluster.KMeans(n_clusters=8, init='k-means++', n_init=10, max_it
我尝试使用 scikit-learn 实现并行运行 KMeans,但我不断收到以下错误消息: Traceback (most recent call last): File "run_kmeans
前言 K-means是一种经典的无监督学习算法,用于对数据进行聚类。K-means算法将数据集视为具有n个特征的n维空间,并尝试通过最小化簇内平方误差的总和来将数据点划分为簇。本文将介绍K-m
所以按照文档中的示例 (here): The KElbowVisualizer implements the “elbow” method to help data scientists select
我试图将数据点(通过欧几里得距离)分配给一组已知的、预定义的中心点,将点分配给最近的固定中心点。 我有一种感觉,我可能过于复杂/遗漏了一些基本的东西,但我已经尝试使用具有预定中心且没有迭代的 kmea
我想知道其他人在用 K-means 集群排序做什么。我正在制作热图(主要是 ChIP-Seq 数据)并使用自定义热图函数(基于 R 的内置热图函数)获得漂亮的数字。但是,我想要两个改进。第一个是根据递
我正在尝试用 Java 实现 KMeans,但遇到了一个导致所有结果都丢失的情况。当给定一些随机选择的初始化质心,数据进入其中一个质心实际上并未定义簇的状态时,就会发生这种情况。例如,如果 K=3,则
示例: load kmeansdata %provides X variable Y=bsxfun(@minus,X,mean(X,2))'/sqrt(size(X,2)-1); %normalize
我正在大数据集上运行 k-means。我是这样设置的: from sklearn.cluster import KMeans km = KMeans(n_clusters=500, max_iter
我有一组包含 50 个特征(c1、c2、c3 ...)的数据,超过 80k 行。 每行包含标准化数值(范围 0-1)。它实际上是一个标准化的虚拟变量,其中一些行只有很少的特征,3-4(即如果没有值则分
我想对我的数据集的特定列执行 K 均值。由于这些是分类数据,我计划对其进行 onehot_encoding。现在我想知道是否可以对特定列进行 K-means 并显示所有列的结果(例如一组)? 例如,我
使用 K 均值聚类生成 K 个簇,我们如何计算每个簇的面积?有公式吗? 我已经尝试过 gArea() 与 rgeos 包,但我收到错误代码“ unable to find an inherited m
我知道下定义的 KMeans 算法需要特征缩放sklearn.cluster.KMeans 我的问题是,在使用 KMeans 之前是否需要手动完成,或者 KMeans 是否会自动执行特征缩放?如果是自
我是一名优秀的程序员,十分优秀!