gpt4 book ai didi

python - 3d 点云中的平面拟合

转载 作者:太空狗 更新时间:2023-10-29 22:15:14 25 4
gpt4 key购买 nike

我正在尝试使用回归公式 Z= aX + bY +C 在 3d 点云中查找平面

我实现了最小二乘法和 ransac 解决方案, 但3参数方程将平面拟合限制在2.5D——该公式不能应用于平行于Z轴的平面。

我的问题是如何将平面拟合推广到全 3d?我想添加第四个参数以获得完整的方程式 aX +bY +c*Z + d我怎样才能避免琐碎的 (0,0,0,0) 解决方案?

谢谢!

我正在使用的代码:

from sklearn import linear_model

def local_regression_plane_ransac(neighborhood):
"""
Computes parameters for a local regression plane using RANSAC
"""

XY = neighborhood[:,:2]
Z = neighborhood[:,2]
ransac = linear_model.RANSACRegressor(
linear_model.LinearRegression(),
residual_threshold=0.1
)
ransac.fit(XY, Z)

inlier_mask = ransac.inlier_mask_
coeff = model_ransac.estimator_.coef_
intercept = model_ransac.estimator_.intercept_

最佳答案

更新

此功能现已集成到 https://github.com/daavoo/pyntcloud 中并使平面拟合过程更加简单:

给定一个点云:

enter image description here

你只需要像这样添加一个标量场:

is_floor = cloud.add_scalar_field("plane_fit")

Wich 将为拟合平面的点添加值为 1 的新列。

您可以将标量场​​可视化:

enter image description here


旧答案

我认为您可以轻松使用 PCA使平面适合 3D 点而不是回归。

这是一个简单的 PCA 实现:

def PCA(data, correlation = False, sort = True):
""" Applies Principal Component Analysis to the data

Parameters
----------
data: array
The array containing the data. The array must have NxM dimensions, where each
of the N rows represents a different individual record and each of the M columns
represents a different variable recorded for that individual record.
array([
[V11, ... , V1m],
...,
[Vn1, ... , Vnm]])

correlation(Optional) : bool
Set the type of matrix to be computed (see Notes):
If True compute the correlation matrix.
If False(Default) compute the covariance matrix.

sort(Optional) : bool
Set the order that the eigenvalues/vectors will have
If True(Default) they will be sorted (from higher value to less).
If False they won't.
Returns
-------
eigenvalues: (1,M) array
The eigenvalues of the corresponding matrix.

eigenvector: (M,M) array
The eigenvectors of the corresponding matrix.

Notes
-----
The correlation matrix is a better choice when there are different magnitudes
representing the M variables. Use covariance matrix in other cases.

"""

mean = np.mean(data, axis=0)

data_adjust = data - mean

#: the data is transposed due to np.cov/corrcoef syntax
if correlation:

matrix = np.corrcoef(data_adjust.T)

else:
matrix = np.cov(data_adjust.T)

eigenvalues, eigenvectors = np.linalg.eig(matrix)

if sort:
#: sort eigenvalues and eigenvectors
sort = eigenvalues.argsort()[::-1]
eigenvalues = eigenvalues[sort]
eigenvectors = eigenvectors[:,sort]

return eigenvalues, eigenvectors

下面是如何将点拟合到平面上:

def best_fitting_plane(points, equation=False):
""" Computes the best fitting plane of the given points

Parameters
----------
points: array
The x,y,z coordinates corresponding to the points from which we want
to define the best fitting plane. Expected format:
array([
[x1,y1,z1],
...,
[xn,yn,zn]])

equation(Optional) : bool
Set the oputput plane format:
If True return the a,b,c,d coefficients of the plane.
If False(Default) return 1 Point and 1 Normal vector.
Returns
-------
a, b, c, d : float
The coefficients solving the plane equation.

or

point, normal: array
The plane defined by 1 Point and 1 Normal vector. With format:
array([Px,Py,Pz]), array([Nx,Ny,Nz])

"""

w, v = PCA(points)

#: the normal of the plane is the last eigenvector
normal = v[:,2]

#: get a point from the plane
point = np.mean(points, axis=0)


if equation:
a, b, c = normal
d = -(np.dot(normal, point))
return a, b, c, d

else:
return point, normal

然而,由于此方法对异常值敏感,您可以使用 RANSAC使拟合对异常值具有鲁棒性。

有一个 ransac 的 Python 实现 here .

并且您只需要定义一个平面模型类,以便使用它来将平面拟合到 3D 点。

在任何情况下,如果您可以从异常值中清除 3D 点(也许您可以使用 KD-Tree S.O.R 过滤器),您应该使用 PCA 获得非常好的结果。

这是一个 S.O.R 的实现:

def statistical_outilier_removal(kdtree, k=8, z_max=2 ):
""" Compute a Statistical Outlier Removal filter on the given KDTree.

Parameters
----------
kdtree: scipy's KDTree instance
The KDTree's structure which will be used to
compute the filter.

k(Optional): int
The number of nearest neighbors wich will be used to estimate the
mean distance from each point to his nearest neighbors.
Default : 8

z_max(Optional): int
The maximum Z score wich determines if the point is an outlier or
not.

Returns
-------
sor_filter : boolean array
The boolean mask indicating wherever a point should be keeped or not.
The size of the boolean mask will be the same as the number of points
in the KDTree.

Notes
-----
The 2 optional parameters (k and z_max) should be used in order to adjust
the filter to the desired result.

A HIGHER 'k' value will result(normally) in a HIGHER number of points trimmed.

A LOWER 'z_max' value will result(normally) in a HIGHER number of points trimmed.

"""

distances, i = kdtree.query(kdtree.data, k=k, n_jobs=-1)

z_distances = stats.zscore(np.mean(distances, axis=1))

sor_filter = abs(z_distances) < z_max

return sor_filter

您可以使用可能使用 this implementation 计算的 3D 点的 KDtree 为函数提供数据

关于python - 3d 点云中的平面拟合,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38754668/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com