gpt4 book ai didi

python - 在具有数值的列上的 pandas 数据框中逐行应用函数

转载 作者:太空狗 更新时间:2023-10-29 22:13:07 25 4
gpt4 key购买 nike

我有以下数据框:

import pandas as pd
df = pd.DataFrame({'AAA' : ['w','x','y','z'], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]})

看起来像这样:

In [32]: df
Out[32]:
AAA BBB CCC
0 w 10 100
1 x 20 50
2 y 30 -30
3 z 40 -50

我想做的是对每一行的每一列执行函数操作,除了具有非数值的那些(在本例中为 AAA)。在真实情况下,非数字的情况总是在第一列,其余的(可能大于 2 列)总是数字的。

最终期望的输出是:

  AAA  BBB  CCC  Score
0 w 10 100 110
1 x 20 50 70
2 y 30 -30 0
3 z 40 -50 -10

我试过了但是失败了:

import numpy as np
df["Score"] = df.apply(np.sum, axis=1)

正确的做法是什么?

更新2:

这是给出 SettingWithCopyWarning 的代码。请重新启动 ipython 进行测试。

import pandas as pd
import numpy as np
def cvscore(fclist):
sd = np.std(fclist)
mean = np.mean(fclist)
cv = sd/mean
return cv

def calc_cvscore_on_df(df):
df["CV"] = df.iloc[:,1:].apply(cvscore, axis=1)
return df

df3 = pd.DataFrame(np.random.randn(1000, 3), columns=['a', 'b', 'c'])
calc_cvscore_on_df(df3[["a","b"]])

最佳答案

要选择除第一列以外的所有内容,您可以使用 df.iloc[:, 1:]:

In [371]: df['Score'] = df.iloc[:, 1:].sum(axis=1)

In [372]: df
Out[372]:
AAA BBB CCC Score
0 w 10 100 110
1 x 20 50 70
2 y 30 -30 0
3 z 40 -50 -10

将任意函数 func 应用于每一行:

df.iloc[:, 1:].apply(func, axis=1)

例如,

import numpy as np
import pandas as pd

def cvscore(fclist):
sd = np.std(fclist)
mean = np.mean(fclist)
cv = sd/mean
return cv

df = pd.DataFrame({'AAA' : ['w','x','y','z'], 'BBB' : [10,20,30,40],
'CCC' : [100,50,-30,-50]})

df['Score'] = df.iloc[:, 1:].apply(cvscore, axis=1)
print(df)

产量

  AAA  BBB  CCC     Score
0 w 10 100 1.211386
1 x 20 50 0.868377
2 y 30 -30 NaN
3 z 40 -50 -5.809058

关于python - 在具有数值的列上的 pandas 数据框中逐行应用函数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29292114/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com