gpt4 book ai didi

python - 从 pandas groupby 中的每个组中选择前 n 个元素

转载 作者:太空狗 更新时间:2023-10-29 22:09:01 26 4
gpt4 key购买 nike

我有一个大致如下所示的数据框:

>>> data
price currency
id
2 1050 EU
5 1400 EU
4 1750 EU
8 4000 EU
7 630 GBP
1 1000 GBP
9 1400 GBP
3 2000 USD
6 7000 USD

我需要为每种货币获取一个包含 n 最高价产品的新数据框,其中 n 取决于货币并在另一个数据框中给出:

>>> select_number
number_to_select
currency
GBP 2
EU 2
USD 1

如果我必须选择相同数量的最高价元素,我可以使用 pandas.groupby 按货币对数据进行分组,然后使用分组的 head 方法对象。

但是,head 只接受一个数字,不接受数组或某些表达式。

当然,我可以编写一个for 循环,但这样做会非常笨拙且效率低下。

如何以好的方式做到这一点?

最佳答案

您可以使用:

data = pd.DataFrame({'id': {0: 2, 1: 5, 2: 4, 3: 8, 4: 7, 5: 1, 6: 9, 7: 3, 8: 6}, 'price': {0: 1050, 1: 1400, 2: 1750, 3: 4000, 4: 630, 5: 1000, 6: 1400, 7: 2000, 8: 7000}, 'currency': {0: 'EU', 1: 'EU', 2: 'EU', 3: 'EU', 4: 'GBP', 5: 'GBP', 6: 'GBP', 7: 'USD', 8: 'USD'}})
select_number = pd.DataFrame({'number_to_select': {'USD': 1, 'GBP': 2, 'EU': 2}})
print (data)
currency id price
0 EU 2 1050
1 EU 5 1400
2 EU 4 1750
3 EU 8 4000
4 GBP 7 630
5 GBP 1 1000
6 GBP 9 1400
7 USD 3 2000
8 USD 6 7000

print (select_number)
number_to_select
EU 2
GBP 2
USD 1

通过 dict 映射的解决方案:

d = select_number.to_dict()
d1 = d['number_to_select']
print (d1)
{'USD': 1, 'EU': 2, 'GBP': 2}

print (data.groupby('currency').apply(lambda dfg: dfg.nlargest(d1[dfg.name],'price'))
.reset_index(drop=True))

currency id price
0 EU 8 4000
1 EU 4 1750
2 GBP 9 1400
3 GBP 1 1000
4 USD 6 7000

解决方案2:

print (data.groupby('currency')
.apply(lambda dfg: (dfg.nlargest(select_number
.loc[dfg.name, 'number_to_select'], 'price')))
.reset_index(drop=True))

id price currency
0 8 4000 EU
1 4 1750 EU
2 9 1400 GBP
3 1 1000 GBP
4 6 7000 USD

解释:

我认为对于调试来说,最好使用函数 fprint:

def f(dfg):
#dfg is DataFrame
print (dfg)
#name of group
print (dfg.name)
#select value from select_number
print (select_number.loc[dfg.name, 'number_to_select'])
#return top rows per groups
print (dfg.nlargest(select_number.loc[dfg.name, 'number_to_select'], 'price'))
return (dfg.nlargest(select_number.loc[dfg.name, 'number_to_select'], 'price'))

print (data.groupby('currency').apply(f))
  currency  id  price
0 EU 2 1050
1 EU 5 1400
2 EU 4 1750
3 EU 8 4000
currency id price
0 EU 2 1050
1 EU 5 1400
2 EU 4 1750
3 EU 8 4000
EU
2
currency id price
3 EU 8 4000
2 EU 4 1750
currency id price
4 GBP 7 630
5 GBP 1 1000
6 GBP 9 1400
GBP
2
currency id price
6 GBP 9 1400
5 GBP 1 1000
currency id price
7 USD 3 2000
8 USD 6 7000
USD
1
currency id price
8 USD 6 7000

currency id price
currency
EU 3 EU 8 4000
2 EU 4 1750
GBP 6 GBP 9 1400
5 GBP 1 1000
USD 8 USD 6 7000

关于python - 从 pandas groupby 中的每个组中选择前 n 个元素,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37482733/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com