- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我主要使用 pd.get_dummies()
将分类变量转换为二进制矩阵,从而为机器学习分类任务预处理数据。这适用于单个 Pandas DataFrame 列,并输出一个新的 DataFrame,其行数与原始行数相同,并且原始列中的唯一分类变量数宽度相同。
我需要为形状为 (3,000,000 x 16)
的 DataFrame 完成此操作,它输出形状为二进制矩阵:(3,000,000 x 600)
。
在这个过程中,转换为二进制矩阵的步骤 pd.get_dummies()
非常快,但是使用 pd.DataFrame.loc 对输出矩阵进行赋值要慢得多[]
。由于我已经切换到直接保存到 np.ndarray
,这很多 更快,我只是想知道为什么? (请查看问题底部的终端输出以进行时间比较)
n.b. 正如评论中所指出的,我可以在整个框架上只使用所有 pd.get_dummies()
。然而,一些列需要定制的预处理,即:放入桶中。最难处理的列是包含一串标签(由,
或,
分隔的列,必须这样处理:df[col]。 str.replace(' ','').str.get_dummies(sep=',')
。此外,预处理的训练集和测试集需要相同的列集(继承自 all_cols),因为它们可能不需要一旦它们被分解成矩阵,就具有相同的特征。
请查看下面每个版本的代码
数据框版本:
def preprocess_df(df):
with open(PICKLE_PATH + 'cols.pkl', 'rb') as handle:
cols = pickle.load(handle)
x = np.zeros(shape=(len(df),len(cols)))
# x = pd.DataFrame(columns=all_cols)
for col in df.columns:
# 1. make binary matrix
df_col = pd.get_dummies(df[col], prefix=str(col))
print "Processed: ", col, datetime.datetime.now()
# 2. assign each value in binary matrix to col in output
for dummy_col in df_col.columns:
x.loc[:, dummy_col] = df_col[dummy_col]
print "Assigned: ", col, datetime.datetime.now()
return x.values
np版本:
def preprocess_np(df):
with open(PICKLE_PATH + 'cols.pkl', 'rb') as handle:
cols = pickle.load(handle)
x = np.zeros(shape=(len(df),len(cols)))
for col in df.columns:
# 1. make binary matrix
df_col = pd.get_dummies(df[col], prefix=str(col))
print "Processed: ", col, datetime.datetime.now()
# 2. assign each value in binary matrix to col in output
for dummy_col in df_col.columns:
idx = [i for i,j in enumerate(all_cols) if j == dummy_col][0]
x[:, idx] = df_col[dummy_col].values.T
print "Assigned: ", col, datetime.datetime.now()
return x
定时输出(10,000
示例)
数据框版本:
Processed: Weekday
Assigned: Weekday 0.437081
Processed: Hour 0.002366
Assigned: Hour 1.33815
np版本:
Processed: Weekday
Assigned: Weekday 0.006992
Processed: Hour 0.002632
Assigned: Hour 0.008989
是否有其他方法可以进一步优化它?我很感兴趣,因为目前我正在放弃一个可能有用的功能,因为它太慢了,无法处理额外的 15,000
列到输出。
对于我所采用的方法的任何一般性建议也非常感谢!
谢谢
最佳答案
一个实验是更改为 x.loc[:, dummy_col] = df_col[dummy_col].values
。如果输入是一个序列,pandas 会检查每个分配的索引顺序。如果不需要,使用 ndarray 分配会关闭它,这应该会提高性能。
关于Python Pandas : Why is numpy so much faster than Pandas for column assignment? 我可以进一步优化吗?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/36517352/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!