gpt4 book ai didi

python - 如何使用平面数据表中的嵌套记录构建 JSON 文件?

转载 作者:太空狗 更新时间:2023-10-29 21:58:10 25 4
gpt4 key购买 nike

我正在寻找一种 Python 技术来从 pandas 数据框中的平面表构建嵌套的 JSON 文件。例如,一个 pandas 数据框表怎么可能是这样的:

teamname  member firstname lastname  orgname         phone        mobile
0 1 0 John Doe Anon 916-555-1234
1 1 1 Jane Doe Anon 916-555-4321 916-555-7890
2 2 0 Mickey Moose Moosers 916-555-0000 916-555-1111
3 2 1 Minny Moose Moosers 916-555-2222

被获取并导出为如下所示的 JSON:

{
"teams": [
{
"teamname": "1",
"members": [
{
"firstname": "John",
"lastname": "Doe",
"orgname": "Anon",
"phone": "916-555-1234",
"mobile": "",
},
{
"firstname": "Jane",
"lastname": "Doe",
"orgname": "Anon",
"phone": "916-555-4321",
"mobile": "916-555-7890",
}
]
},
{
"teamname": "2",
"members": [
{
"firstname": "Mickey",
"lastname": "Moose",
"orgname": "Moosers",
"phone": "916-555-0000",
"mobile": "916-555-1111",
},
{
"firstname": "Minny",
"lastname": "Moose",
"orgname": "Moosers",
"phone": "916-555-2222",
"mobile": "",
}
]
}
]

}

我已经尝试通过创建一个字典的字典并转储到 JSON 来做到这一点。这是我当前的代码:

data = pandas.read_excel(inputExcel, sheetname = 'SCAT Teams', encoding = 'utf8')
memberDictTuple = []

for index, row in data.iterrows():
dataRow = row
rowDict = dict(zip(columnList[2:], dataRow[2:]))

teamRowDict = {columnList[0]:int(dataRow[0])}

memberId = tuple(row[1:2])
memberId = memberId[0]

teamName = tuple(row[0:1])
teamName = teamName[0]

memberDict1 = {int(memberId):rowDict}
memberDict2 = {int(teamName):memberDict1}

memberDictTuple.append(memberDict2)

memberDictTuple = tuple(memberDictTuple)
formattedJson = json.dumps(memberDictTuple, indent = 4, sort_keys = True)
print formattedJson

这会产生以下输出。每个项目都嵌套在“teamname”1 或 2 下的正确级别,但如果它们具有相同的 teamname,则记录应嵌套在一起。我该如何解决这个问题,以便团队名称 1 和团队名称 2 中各嵌套 2 条记录?

[
{
"1": {
"0": {
"email": "john.doe@wildlife.net",
"firstname": "John",
"lastname": "Doe",
"mobile": "none",
"orgname": "Anon",
"phone": "916-555-1234"
}
}
},
{
"1": {
"1": {
"email": "jane.doe@wildlife.net",
"firstname": "Jane",
"lastname": "Doe",
"mobile": "916-555-7890",
"orgname": "Anon",
"phone": "916-555-4321"
}
}
},
{
"2": {
"0": {
"email": "mickey.moose@wildlife.net",
"firstname": "Mickey",
"lastname": "Moose",
"mobile": "916-555-1111",
"orgname": "Moosers",
"phone": "916-555-0000"
}
}
},
{
"2": {
"1": {
"email": "minny.moose@wildlife.net",
"firstname": "Minny",
"lastname": "Moose",
"mobile": "none",
"orgname": "Moosers",
"phone": "916-555-2222"
}
}
}
]

最佳答案

这是一个可以创建所需 JSON 格式的解决方案。首先,我按适当的列对数据框进行分组,然后我没有为每个列标题/记录对创建字典(并丢失数据顺序),而是将它们创建为元组列表,然后将列表转换为有序字典。为其他所有内容分组的两列创建了另一个 Ordered Dict。列表和有序字典之间的精确分层对于 JSON 转换产生正确的格式是必要的。另请注意,当转储到 JSON 时,sort_keys 必须设置为 false,否则您所有的 Ordered Dict 将重新排列为字母顺序。

import pandas
import json
from collections import OrderedDict

inputExcel = 'E:\\teams.xlsx'
exportJson = 'E:\\teams.json'

data = pandas.read_excel(inputExcel, sheetname = 'SCAT Teams', encoding = 'utf8')

# This creates a tuple of column headings for later use matching them with column data
cols = []
columnList = list(data[0:])
for col in columnList:
cols.append(str(col))
columnList = tuple(cols)

#This groups the dataframe by the 'teamname' and 'members' columns
grouped = data.groupby(['teamname', 'members']).first()

#This creates a reference to the index level of the groups
groupnames = data.groupby(["teamname", "members"]).grouper.levels
tm = (groupnames[0])

#Create a list to add team records to at the end of the first 'for' loop
teamsList = []

for teamN in tm:
teamN = int(teamN) #added this in to prevent TypeError: 1 is not JSON serializable
tempList = [] #Create an temporary list to add each record to
for index, row in grouped.iterrows():
dataRow = row
if index[0] == teamN: #Select the record in each row of the grouped dataframe if its index matches the team number

#In order to have the JSON records come out in the same order, I had to first create a list of tuples, then convert to and Ordered Dict
rowDict = ([(columnList[2], dataRow[0]), (columnList[3], dataRow[1]), (columnList[4], dataRow[2]), (columnList[5], dataRow[3]), (columnList[6], dataRow[4]), (columnList[7], dataRow[5])])
rowDict = OrderedDict(rowDict)
tempList.append(rowDict)
#Create another Ordered Dict to keep 'teamname' and the list of members from the temporary list sorted
t = ([('teamname', str(teamN)), ('members', tempList)])
t= OrderedDict(t)

#Append the Ordered Dict to the emepty list of teams created earlier
ListX = t
teamsList.append(ListX)


#Create a final dictionary with a single item: the list of teams
teams = {"teams":teamsList}

#Dump to JSON format
formattedJson = json.dumps(teams, indent = 1, sort_keys = False) #sort_keys MUST be set to False, or all dictionaries will be alphebetized
formattedJson = formattedJson.replace("NaN", '"NULL"') #"NaN" is the NULL format in pandas dataframes - must be replaced with "NULL" to be a valid JSON file
print formattedJson

#Export to JSON file
parsed = open(exportJson, "w")
parsed.write(formattedJson)

print"\n\nExport to JSON Complete"

关于python - 如何使用平面数据表中的嵌套记录构建 JSON 文件?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37713329/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com