- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试在 keras 中制作一个聊天机器人。我为词汇表中的每个词分配了自己的 ID。一个训练样本如下所示:
[0 0 0 0 0 0 32 328 2839 13 192 1 ] -> [23 3289 328 2318 12 0 0 0 0 0 0 0]
然后我使用 Keras 中的嵌入层将这些 ID 嵌入到大小为 32 的向量中。然后我使用 LSTM 层作为隐藏层。问题是我的输出是一个嵌入式 ID 的列表。
[ 0.16102183 0.1238187 0.1159694 0.13688719 0.12964118 0.12848872
0.13515817 0.13582146 0.16919741 0.15453722 ...]
如何将这些嵌入转换回我原始词汇表中的单词?
这是我的代码:
from nltk.tokenize import word_tokenize
from sklearn.feature_extraction.text import CountVectorizer
from keras.models import Sequential, load_model
from keras.layers import LSTM
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence
import os
import numpy as np
import cPickle as pickle
class Chatbot(object):
def __init__(self, h_layers=1):
# self.name = name
self.h_layers = h_layers
self.seq2seq = None
self.max_length = 0
self.vocabulary = {}
@staticmethod
def load(model_name):
with open('models/{}/chatbot_object.pkl'.format(model_name), 'rb') as pickle_file:
obj = pickle.load(pickle_file)
obj.seq2seq = load_model('models/{}/seq2seq.h5'.format(model_name))
return obj
def train(self, x_train, y_train):
count_vect = CountVectorizer()
count_vect.fit(x_train)
count_vect.fit(y_train)
self.vocabulary = count_vect.vocabulary_
self.vocabulary.update({'<START>': len(self.vocabulary),
'<END>': len(self.vocabulary) + 1,
'<PAD>': len(self.vocabulary) + 2,
'<UNK>': len(self.vocabulary) + 3})
for i in range(len(x_train)):
x_train[i] = ['<START>'] + [w.lower() for w in word_tokenize(x_train[i])] + ['<END>']
for i in range(len(y_train)):
y_train[i] = ['<START>'] + [w.lower() for w in word_tokenize(y_train[i])] + ['<END>']
for sample in x_train:
if len(sample) > self.max_length:
self.max_length = len(sample)
for sample in y_train:
if len(sample) > self.max_length:
self.max_length = len(sample)
for i in range(len(x_train)):
x_train[i] = [self.vocabulary[w] for w in x_train[i] if w in self.vocabulary]
for i in range(len(y_train)):
y_train[i] = [self.vocabulary[w] for w in y_train[i] if w in self.vocabulary]
x_train = sequence.pad_sequences(x_train, maxlen=self.max_length, value=self.vocabulary['<PAD>'])
y_train = sequence.pad_sequences(y_train, maxlen=self.max_length, padding='post',
value=self.vocabulary['<PAD>'])
x_train = np.asarray(x_train)
y_train = np.asarray(y_train)
embedding_vector_length = 32
self.seq2seq = Sequential()
self.seq2seq.add(Embedding(len(self.vocabulary), embedding_vector_length, input_length=self.max_length))
for _ in range(self.h_layers):
self.seq2seq.add(LSTM(self.max_length, return_sequences=True))
self.seq2seq.add(LSTM(self.max_length))
self.seq2seq.compile(loss='cosine_proximity', optimizer='adam', metrics=['accuracy'])
self.seq2seq.fit(x_train[:100], y_train[:100], epochs=5, batch_size=32)
def save(self, filename):
if filename not in os.listdir('models'):
os.system('mkdir models/{}'.format(filename))
self.seq2seq.save('models/{}/seq2seq.h5'.format(filename))
self.seq2seq = None
with open('models/{}/chatbot_object.pkl'.format(filename), 'wb') as pickle_file:
pickle.dump(self, pickle_file)
def respond(self, text):
tokens = ['<START>'] + [w.lower() for w in word_tokenize(text)] + ['<END>']
for i in range(len(tokens)):
if tokens[i] in self.vocabulary:
tokens[i] = self.vocabulary[tokens[i]]
else:
tokens[i] = self.vocabulary['<PAD>']
x = sequence.pad_sequences([tokens], maxlen=self.max_length, value=self.vocabulary['<PAD>'])
prediction = self.seq2seq.predict(x, batch_size=1)
return prediction[0]
最佳答案
嵌入层像密集层一样工作,没有偏差或激活,只是经过优化。输入是一个单热向量(实际上它是一个整数,尽管从概念上讲它最初被转换为一个单热),输出是一个密集向量。由于此 embedding_layer.weights[0]
返回矩阵,它将与 one-hot 向量相乘。这意味着如果你调用 tf.linalg.pinv(embedding_layer.weights[0])
你应该得到一个矩阵,当乘以嵌入向量时,产生单热向量(tf .linalg.pinv
是矩阵的 Moore 伪逆)因此,嵌入的逆将是 tf.linalg.matmul(embedded_vector,tf.linalg.pinv(embedding_layer.weights[0] ))
这会产生词汇表长度的向量。然后,您可能希望通过 softmax 函数 (tf.nn.softmax
) 生成每个单词的概率分布。
关于python - keras中的反向词嵌入 - python,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45773660/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!