gpt4 book ai didi

python - keras中的反向词嵌入 - python

转载 作者:太空狗 更新时间:2023-10-29 21:57:56 25 4
gpt4 key购买 nike

我正在尝试在 keras 中制作一个聊天机器人。我为词汇表中的每个词分配了自己的 ID。一个训练样本如下所示:

[0 0 0 0 0 0 32 328 2839 13 192 1 ] -> [23 3289 328 2318 12 0 0 0 0 0 0 0]

然后我使用 Keras 中的嵌入层将这些 ID 嵌入到大小为 32 的向量中。然后我使用 LSTM 层作为隐藏层。问题是我的输出是一个嵌入式 ID 的列表。

[ 0.16102183 0.1238187 0.1159694 0.13688719 0.12964118 0.12848872
0.13515817 0.13582146 0.16919741 0.15453722 ...]

如何将这些嵌入转换回我原始词汇表中的单词?

这是我的代码:

from nltk.tokenize import word_tokenize
from sklearn.feature_extraction.text import CountVectorizer
from keras.models import Sequential, load_model
from keras.layers import LSTM
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence

import os

import numpy as np
import cPickle as pickle


class Chatbot(object):

def __init__(self, h_layers=1):
# self.name = name
self.h_layers = h_layers
self.seq2seq = None
self.max_length = 0
self.vocabulary = {}

@staticmethod
def load(model_name):
with open('models/{}/chatbot_object.pkl'.format(model_name), 'rb') as pickle_file:
obj = pickle.load(pickle_file)
obj.seq2seq = load_model('models/{}/seq2seq.h5'.format(model_name))
return obj

def train(self, x_train, y_train):
count_vect = CountVectorizer()
count_vect.fit(x_train)
count_vect.fit(y_train)

self.vocabulary = count_vect.vocabulary_
self.vocabulary.update({'<START>': len(self.vocabulary),
'<END>': len(self.vocabulary) + 1,
'<PAD>': len(self.vocabulary) + 2,
'<UNK>': len(self.vocabulary) + 3})

for i in range(len(x_train)):
x_train[i] = ['<START>'] + [w.lower() for w in word_tokenize(x_train[i])] + ['<END>']
for i in range(len(y_train)):
y_train[i] = ['<START>'] + [w.lower() for w in word_tokenize(y_train[i])] + ['<END>']

for sample in x_train:
if len(sample) > self.max_length:
self.max_length = len(sample)
for sample in y_train:
if len(sample) > self.max_length:
self.max_length = len(sample)

for i in range(len(x_train)):
x_train[i] = [self.vocabulary[w] for w in x_train[i] if w in self.vocabulary]
for i in range(len(y_train)):
y_train[i] = [self.vocabulary[w] for w in y_train[i] if w in self.vocabulary]

x_train = sequence.pad_sequences(x_train, maxlen=self.max_length, value=self.vocabulary['<PAD>'])
y_train = sequence.pad_sequences(y_train, maxlen=self.max_length, padding='post',
value=self.vocabulary['<PAD>'])

x_train = np.asarray(x_train)
y_train = np.asarray(y_train)

embedding_vector_length = 32

self.seq2seq = Sequential()
self.seq2seq.add(Embedding(len(self.vocabulary), embedding_vector_length, input_length=self.max_length))

for _ in range(self.h_layers):
self.seq2seq.add(LSTM(self.max_length, return_sequences=True))

self.seq2seq.add(LSTM(self.max_length))
self.seq2seq.compile(loss='cosine_proximity', optimizer='adam', metrics=['accuracy'])
self.seq2seq.fit(x_train[:100], y_train[:100], epochs=5, batch_size=32)

def save(self, filename):
if filename not in os.listdir('models'):
os.system('mkdir models/{}'.format(filename))
self.seq2seq.save('models/{}/seq2seq.h5'.format(filename))
self.seq2seq = None
with open('models/{}/chatbot_object.pkl'.format(filename), 'wb') as pickle_file:
pickle.dump(self, pickle_file)

def respond(self, text):
tokens = ['<START>'] + [w.lower() for w in word_tokenize(text)] + ['<END>']
for i in range(len(tokens)):
if tokens[i] in self.vocabulary:
tokens[i] = self.vocabulary[tokens[i]]
else:
tokens[i] = self.vocabulary['<PAD>']
x = sequence.pad_sequences([tokens], maxlen=self.max_length, value=self.vocabulary['<PAD>'])
prediction = self.seq2seq.predict(x, batch_size=1)
return prediction[0]

最佳答案

嵌入层像密集层一样工作,没有偏差或激活,只是经过优化。输入是一个单热向量(实际上它是一个整数,尽管从概念上讲它最初被转换为一个单热),输出是一个密集向量。由于此 embedding_layer.weights[0] 返回矩阵,它将与 one-hot 向量相乘。这意味着如果你调用 tf.linalg.pinv(embedding_layer.weights[0]) 你应该得到一个矩阵,当乘以嵌入向量时,产生单热向量(tf .linalg.pinv 是矩阵的 Moore 伪逆)因此,嵌入的逆将是 tf.linalg.matmul(embedded_vector,tf.linalg.pinv(embedding_layer.weights[0] )) 这会产生词汇表长度的向量。然后,您可能希望通过 softmax 函数 (tf.nn.softmax) 生成每个单词的概率分布。

关于python - keras中的反向词嵌入 - python,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/45773660/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com